Model Selection and Mixed-Effects Modeling of HIV Infection Dynamics

We present an introduction to a model selection methodology and an application to mathematical models of in vivo HIV infection dynamics. We consider six previously published deterministic models and compare them with respect to their ability to represent HIV-infected patients undergoing reverse transcriptase mono-therapy. In the creation of the statistical model, a hierarchical mixed-effects modeling approach is employed to characterize the inter- and intra-individual variability in the patient population. We estimate the population parameters in a maximum likelihood function formulation, which is then used to calculate information theory based model selection criteria, providing a ranking of the abilities of the various models to represent patient data. The parameter fits generated by these models, furthermore, provide statistical support for the higher viral clearance rate c in Louie et al. [AIDS 17:1151–1156, 2003]. Among the candidate models, our results suggest which mathematical structures, e.g., linear versus nonlinear, best describe the data we are modeling and illustrate a framework for others to consider when modeling infectious diseases.

[1]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[2]  Patrick W Nelson,et al.  Mathematical analysis of delay differential equation models of HIV-1 infection. , 2002, Mathematical biosciences.

[3]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[4]  H T Banks,et al.  A parameter sensitivity methodology in the context of HIV delay equation models , 2005, Journal of mathematical biology.

[5]  Z. Grossman,et al.  HIV infection: how effective is drug combination treatment? , 1998, Immunology today.

[6]  D M Bortz,et al.  Incorporation of variability into the modeling of viral delays in HIV infection dynamics. , 2003, Mathematical biosciences.

[7]  Hulin Wu,et al.  Identification of significant host factors for HIV dynamics modelled by non‐linear mixed‐effects models , 2002, Statistics in medicine.

[8]  H Wu,et al.  Population HIV‐1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials , 1999, Biometrics.

[9]  Andrew B. Lawson Editorial: SMMR special issue on disease mapping , 2005 .

[10]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[11]  A. Perelson,et al.  A model of HIV-1 pathogenesis that includes an intracellular delay. , 2000, Mathematical biosciences.

[12]  J. Ware,et al.  Applications of Statistics , 1978 .

[13]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[14]  D M Bortz,et al.  Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. , 2006, Mathematical biosciences.

[15]  Harvey Thomas Banks,et al.  Statistical methods for model comparison in parameter estimation problems for distributed systems , 1990 .

[16]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[17]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[18]  A. Perelson,et al.  Influence of delayed viral production on viral dynamics in HIV-1 infected patients. , 1998, Mathematical biosciences.

[19]  M A Nowak,et al.  Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Malka Gorfine,et al.  Maximum likelihood estimator and likelihood ratio test in complex models: An application to B lymphocyte development , 2003, Bulletin of mathematical biology.

[21]  Alan S. Perelson,et al.  Decay characteristics of HIV-1-infected compartments during combination therapy , 1997, Nature.

[22]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[23]  M A Nowak,et al.  Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. , 1997, Journal of theoretical biology.

[24]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[25]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[26]  van M.H. Emden,et al.  An analysis of complexity , 1971 .

[27]  Sebastian Bonhoeffer,et al.  Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis , 1999, The Lancet.

[28]  V De Gruttola,et al.  Estimation of HIV dynamic parameters. , 1998, Statistics in medicine.

[29]  A S Perelson,et al.  Effect of Drug Efficacy and the Eclipse Phase of the Viral Life Cycle on Estimates of HIV Viral Dynamic Parameters , 2001, Journal of acquired immune deficiency syndromes.

[30]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[31]  J. Rissanen Stochastic Complexity in Statistical Inquiry Theory , 1989 .

[32]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[33]  Alan S Perelson,et al.  HIV-1 infection and low steady state viral loads , 2002, Bulletin of mathematical biology.

[34]  A. Perelson,et al.  Dynamics of HIV infection of CD4+ T cells. , 1993, Mathematical biosciences.

[35]  A S Perelson,et al.  Modeling plasma virus concentration during primary HIV infection. , 2000, Journal of theoretical biology.

[36]  Hulin Wu,et al.  Statistical methods for HIV dynamic studies in AIDS clinical trials , 2005, Statistical methods in medical research.

[37]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[38]  D. M. Bortz,et al.  Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics , 2004, Bulletin of mathematical biology.

[39]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[40]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[41]  A D Kelleher,et al.  A model of primary HIV-1 infection. , 1998, Mathematical biosciences.

[42]  Joseph E. Cavanaugh,et al.  Model selection criteria based on Kullback information measures for nonlinear regression , 2005 .

[43]  Ivan Kramer,et al.  Modeling the dynamical impact of HIV on the immune system: Viral clearance, infection, and AIDS , 1999 .

[44]  Christine Hogan,et al.  Determining the antiviral activity of tenofovir disoproxil fumarate in treatment-naive chronically HIV-1-infected individuals , 2003, AIDS.

[45]  C. Benson,et al.  Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection , 1995 .

[46]  Hans-Hermann Bock,et al.  Classification and Related Methods of Data Analysis , 1988 .

[47]  H. T. Banks,et al.  Inverse problems for a class of measure dependent dynamical systems , 2005 .

[48]  H. Akaike A new look at the statistical model identification , 1974 .

[49]  R. Milner Mathematical Centre Tracts , 1976 .

[50]  David M. Bortz Accurate model selection computations , 2006 .

[51]  M A Nowak,et al.  Dynamics of macrophage and T cell infection by HIV. , 1999, Journal of theoretical biology.

[52]  A S Perelson,et al.  Improved estimates for HIV-1 clearance rate and intracellular delay. , 1999, AIDS.

[53]  Hulin Wu,et al.  Missing time‐dependent covariates in human immunodeficiency virus dynamic models , 2002 .

[54]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[55]  H. Akaike INFORMATION THEORY AS AN EXTENSION OF THE MAXIMUM LIKELIHOOD , 1973 .

[56]  A. L. Lloyd,et al.  The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  K. Mardia,et al.  The statistical analysis of shape data , 1989 .

[58]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[59]  R. Shibata Statistical aspects of model selection , 1989 .