Stability of Complex Reaction Networks

[1]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[2]  A. J. Lotka Contribution to the Theory of Periodic Reactions , 1909 .

[3]  A. J. Lotka Analytical Note on Certain Rhythmic Relations in Organic Systems , 1920, Proceedings of the National Academy of Sciences.

[4]  C. Hinshelwood Bakerian Lecture - The more recent work on the reaction between hydrogen and oxygen , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  Beadle Gw The genes of men and molds. , 1948 .

[6]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[7]  J. Hearon,et al.  The kinetics of linear systems with special reference to periodic reactions , 1953 .

[8]  E. L. King,et al.  A Schematic Method of Deriving the Rate Laws for Enzyme-Catalyzed Reactions , 1956 .

[9]  J. Hearon,et al.  THEOREMS ON LINEAR SYSTEMS * , 1963, Annals of the New York Academy of Sciences.

[10]  James P. Quirk,et al.  Qualitative Economics and the Stability of Equilibrium , 1965 .

[11]  H. Hironaka Characteristic polyhedra of singularities , 1967 .

[12]  D Shear,et al.  An analog of the Boltzmann H-theorem (a Liapunov function) for systems of coupled chemical reactions. , 1967, Journal of theoretical biology.

[13]  E. Sel'kov,et al.  Self-oscillations in glycolysis. 1. A simple kinetic model. , 1968, European journal of biochemistry.

[14]  J. Higgins,et al.  Some remarks on Shear's Liapunov function for systems of chemical reactions. , 1968, Journal of theoretical biology.

[15]  David B. Shear,et al.  Stability and Uniqueness of the Equilibrium Point in Chemical Reaction Systems , 1968 .

[16]  James Quirk,et al.  Qualitative Problems in Matrix Theory , 1969 .

[17]  B. B. Edelstein Biochemical model with multiple steady states and hysteresis. , 1970, Journal of theoretical biology.

[18]  F. Schlögl,et al.  On thermodynamics near a steady state , 1971 .

[19]  R. Jackson,et al.  General mass action kinetics , 1972 .

[20]  F. Horn Necessary and sufficient conditions for complex balancing in chemical kinetics , 1972 .

[21]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[22]  M. Feinberg Complex balancing in general kinetic systems , 1972 .

[23]  F. Levin Unitarity and the inhomogeneous equations method for identical particle scattering , 1972 .

[24]  B. B. Edelstein The dynamics of cellular differentiation and associated pattern formation. , 1972, Journal of theoretical biology.

[25]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[26]  Valeurs propres des systèmes de transformation représentables par des graphes en arbres , 1973 .

[27]  F. HoRNt,et al.  On a connexion between stability and graphs in chemical kinetics. I. Stability and the reaction diagram , 1973 .

[28]  F. Horn,et al.  On a connexion between stability and graphs in chemical kinetics II. Stability and the complex graph , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[30]  F. Horn,et al.  Stability and complex balancing in mass-action systems with three short complexes , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Diffusion and chemical oscillations—theory and calculations on a mechanism for the bromate‐cerium‐malonic acid system , 1973 .

[32]  C. Jeffries Qualitative Stability and Digraphs in Model Ecosystems , 1974 .

[33]  Bruce L. Clarke Graph theoretic approach to the stability analysis of steady state chemical reaction networks , 1974 .

[34]  M. Feinberg,et al.  Dynamics of open chemical systems and the algebraic structure of the underlying reaction network , 1974 .

[35]  Bruce L. Clarke,et al.  Stability analysis of a model reaction network using graph theory , 1974 .

[36]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[37]  Bruce L. Clarke Stability of topologically similar chemical networks , 1975 .

[38]  U. Müller-Herold General mass-action kinetics. Positiveness of concentrations as structural property of Horn's equation , 1975 .

[39]  R. M. Noyes,et al.  Oscillations in chemical systems. VII. Effects of light and of oxygen on the Bray-Liebhafsky reaction , 1975 .

[40]  R. M. Noyes,et al.  Oscillations in chemical systems. IX. Reactions of cerium(IV) with malonic acid and its derivatives , 1975 .

[41]  O. Sǐnanoğlu Theory of chemical reaction networks. All possible mechanisms or synthetic pathways with given number of reaction steps or species , 1975 .

[42]  John J. Tyson,et al.  Classification of instabilities in chemical reaction systems , 1975 .

[43]  R. J. Field Limit cycle oscillations in the reversible Oregonator , 1975 .

[44]  B. L. Clarke Theorems on chemical network stability , 1975 .

[45]  Richard M. Noyes,et al.  Oscillations in chemical systems. XII. Applicability to closed systems of models with two and three variables , 1976 .

[46]  H. Othmer The qualitative dynamics of a class of biochemical control circuits , 1976, Journal of mathematical biology.

[47]  Geometry of Titration Systems An Application of Horn’s Theory to the Determination of pK-Values , 1976 .

[48]  R. M. Noyes,et al.  Oscillations in chemical systems. 13. A detailed molecular mechanism for the Bray-Liebhafsky reaction of iodate and hydrogen peroxide , 1976 .

[49]  E. Beretta,et al.  The tree graphs theory for enzymatic reactions. , 1976, Journal of theoretical biology.

[50]  B. L. Clarke Stability of the bromate–cerium–malonic acid network. II. Steady state formic acid case , 1976 .

[51]  B. L. Clarke Stability of the bromate–cerium–malonic acid network. I. Theoretical formulation , 1976 .

[52]  S. Abhyankar Historical Ramblings in Algebraic Geometry and Related Algebra , 1976 .

[53]  The tree graphs theory for enzymatic reactions: a theorem for the reactions among the non-enzymatic species. , 1977, Journal of theoretical biology.

[54]  V. Klee,et al.  When is a Matrix Sign Stable? , 1977, Canadian Journal of Mathematics.

[55]  B. L. Clarke Asymptotes and Intercepts of Real-Power Polynomial Surfaces from the Geometry of the Exponent Polytope , 1978 .

[56]  A. Mewis ABX-Verbindungen mit Ni2In-Struktur Darstellung und Struktur der Verbindungen CaCuP(As), SrCuP(As), SrAgP(As) und EuCuAs / ABX Compounds with the Structure Ni2In Preparation and Crystal Structure of CaCuP(As), SrCuP(As), SrAgP(As), and EuCuAs , 1978 .

[57]  Balder Von Hohenbalken,et al.  Least distance methods for the scheme of polytopes , 1978, Math. Program..

[58]  Die Kristallstruktur von β-NaSbS2 / The Crystal Structure of β-NaSbS2 , 1978 .

[59]  F. Vetrano,et al.  Some results about nonlinear chemical systems represented by trees and cycles , 1979 .

[60]  Peter Schuster,et al.  A principle of natural self-organization , 1977, Naturwissenschaften.

[61]  M. Eigen,et al.  The Hypercycle , 2004, Naturwissenschaften.

[62]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.