A Lyapunov functional for a stage-structured predator–prey model with nonlinear predation rate

Abstract We consider the dynamics of a general stage-structured predator–prey model which generalizes several known predator–prey, SEIR, and virus dynamics models, assuming that the intrinsic growth rate of the prey, the predation rate, and the removal functions are given in an unspecified form. Using the Lyapunov method, we derive sufficient conditions for the local stability of the equilibria together with estimations of their respective domains of attraction, while observing that in several particular but important situations these conditions yield global stability results. The biological significance of these conditions is discussed and the existence of the positive steady state is also investigated.

[1]  Huaiping Zhu,et al.  The Impact of Media on the Control of Infectious Diseases , 2007, Journal of dynamics and differential equations.

[2]  J. P. Lasalle The stability of dynamical systems , 1976 .

[3]  P. Ricciardi,et al.  Lyapunov functions for a generalized Gause-type model , 1995 .

[4]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[5]  G. Yin,et al.  On competitive Lotka-Volterra model in random environments , 2009 .

[6]  Sze-Bi Hsu,et al.  On the Role of Asymptomatic Infection in Transmission Dynamics of Infectious Diseases , 2007, Bulletin of mathematical biology.

[7]  Lansun Chen,et al.  Global Stability of a Predator-Prey System with Stage Structure for the Predator , 2004 .

[8]  Andrei Korobeinikov,et al.  Lyapunov functions and global properties for SEIR and SEIS epidemic models. , 2004, Mathematical medicine and biology : a journal of the IMA.

[9]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[10]  Torsten Lindström Global stability of a model for competing predators , 1994 .

[11]  Josef Hofbauer,et al.  Uniform persistence and repellors for maps , 1989 .

[12]  S. Rush,et al.  The complete heart-lead relationship in the Einthoven triangle. , 1968, The Bulletin of mathematical biophysics.

[13]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[14]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[15]  Ying-Hen Hsieh,et al.  GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH STAGE STRUCTURE FOR THE PREDATOR∗ , 2007 .

[16]  Wan-Tong Li,et al.  Periodic solutions of delayed predator–prey model with the Beddington–DeAngelis functional response , 2007 .

[17]  Ying-Hen Hsieh,et al.  Global Stability for a Virus Dynamics Model with Nonlinear Incidence of Infection and Removal , 2006, SIAM J. Appl. Math..

[18]  G. Harrison,et al.  Global stability of predator-prey interactions , 1979 .

[19]  Juan J. Nieto,et al.  Complexity of a Delayed predator-prey Model with impulsive Harvest and Holling Type II Functional Response , 2008, Adv. Complex Syst..

[20]  A. Margheri,et al.  Some examples of persistence in epidemiological models , 2003, Journal of mathematical biology.

[21]  Michael Y. Li,et al.  A graph-theoretic approach to the method of global Lyapunov functions , 2008 .

[22]  Andrei Korobeinikov,et al.  A Lyapunov function for Leslie-Gower predator-prey models , 2001, Appl. Math. Lett..

[23]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[24]  Juan J. Nieto,et al.  Permanence and Periodic Solution of Predator-Prey System with Holling Type Functional Response and Impulses , 2007 .

[25]  Philip K Maini,et al.  Non-linear incidence and stability of infectious disease models. , 2005, Mathematical medicine and biology : a journal of the IMA.

[26]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[27]  Alessandro Fonda,et al.  Uniformly persistent semidynamical systems , 1988 .

[28]  B. Goh Global Stability in Many-Species Systems , 1977, The American Naturalist.

[29]  GLOBAL STABILITY FOR A STAGE-STRUCTURED PREDATOR-PREY MODEL , 2006 .

[30]  Zhaohui Yuan,et al.  Global stability of epidemiological models with group mixing and nonlinear incidence rates , 2010 .

[31]  Sze-Bi Hsu,et al.  A SURVEY OF CONSTRUCTING LYAPUNOV FUNCTIONS FOR MATHEMATICAL MODELS IN POPULATION BIOLOGY , 2005 .

[32]  Juan J. Nieto,et al.  Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey , 2008 .

[33]  J. Schmidt,et al.  Dynamics of hepatitis B virus infection in vivo. , 1997, Journal of hepatology.

[34]  N. H. Pavel,et al.  Differential equations, flow invariance and applications , 1984 .

[35]  A. Korobeinikov Global properties of basic virus dynamics models , 2004, Bulletin of mathematical biology.

[36]  M A Nowak,et al.  Virus dynamics and drug therapy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Zhijun Liu,et al.  Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy , 2010 .

[38]  R. J. de Boer,et al.  A Formal Derivation of the “Beddington” Functional Response , 1997 .

[39]  Sze-Bi Hsu,et al.  Modeling Intervention Measures and Severity-Dependent Public Response during Severe Acute Respiratory Syndrome Outbreak , 2005, SIAM J. Appl. Math..

[40]  Andrei Korobeinikov,et al.  Stability of ecosystem: global properties of a general predator-prey model. , 2009, Mathematical medicine and biology : a journal of the IMA.

[41]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .