Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

Abstract This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS) algorithm. Intelligent Tuned Harmony Search (ITHS) is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions). Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

[1]  Arturo Jiménez-Gutiérrez,et al.  Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers , 2009 .

[2]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[3]  Arzu Şencan Şahin,et al.  Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm , 2011 .

[4]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[5]  F. T. Mizutani,et al.  Mathematical Programming Model for Heat-Exchanger Network Synthesis Including Detailed Heat-Exchanger Designs. 1. Shell-and-Tube Heat-Exchanger Design , 2003 .

[6]  Kuppan Thulukkanam Heat Exchanger Design Handbook , 2013 .

[7]  R. Hilbert,et al.  Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms , 2006 .

[8]  Di He,et al.  Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .

[9]  Jing Wang,et al.  Space transformation search: a new evolutionary technique , 2009, GEC '09.

[10]  Shahryar Rahnamayan,et al.  Quasi-oppositional Differential Evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[11]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[12]  M. Fesanghary,et al.  Combined heat and power economic dispatch by harmony search algorithm , 2007 .

[13]  Igor Bulatov,et al.  Cost estimation and energy price forecasts for economic evaluation of retrofit projects , 2003 .

[14]  Eduardo M. Queiroz,et al.  Design optimization of shell-and-tube heat exchangers , 2008 .

[15]  Shanlin Yang,et al.  Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map , 2013, Commun. Nonlinear Sci. Numer. Simul..

[16]  K. S. Swarup,et al.  Multi Objective Harmony Search Algorithm For Optimal Power Flow , 2010 .

[17]  Si-ying Sun,et al.  Optimization in calculation of shell-tube heat exchanger , 1993 .

[18]  Jing-fang Zhang,et al.  An improved global-best harmony search algorithm for faster optimization , 2014, Expert Syst. Appl..

[19]  Urmila M. Diwekar,et al.  An automated approach for the optimal design of heat exchangers , 1997 .

[20]  Yin-Fu Huang,et al.  Self-adaptive harmony search algorithm for optimization , 2010, Expert Syst. Appl..

[21]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[22]  W. Rohsenow,et al.  Handbook of Heat Transfer , 1998 .

[23]  Bo Liu,et al.  Directing orbits of chaotic systems by particle swarm optimization , 2006 .

[24]  Rajesh Kumar,et al.  An Intelligent Tuned Harmony Search algorithm for optimisation , 2012, Inf. Sci..

[25]  P. Minton,et al.  PROCESS HEAT TRANSFER , 1990 .

[26]  Jianhua Wu,et al.  Novel global harmony search algorithm for unconstrained problems , 2010, Neurocomputing.

[27]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[28]  Mohammed El-Abd,et al.  Opposition-based artificial bee colony algorithm , 2011, GECCO '11.

[29]  Javier Del Ser,et al.  A novel heuristic approach for distance- and connectivity-based multihop node localization in wireless sensor networks , 2013, Soft Comput..

[30]  Qiuwang Wang,et al.  Optimization of Compact Heat Exchangers by a Genetic Algorithm , 2008 .

[31]  M. Jaberipour,et al.  Two improved harmony search algorithms for solving engineering optimization problems , 2010 .

[32]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[33]  Robert W. Serth,et al.  Design of Shell-and-Tube Heat Exchangers , 2014 .

[34]  Leandro dos Santos Coelho,et al.  A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers , 2012 .

[35]  Hamed Mojallali,et al.  Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems , 2012 .

[36]  Javier Del Ser,et al.  Efficient citywide planning of open WiFi access networks using novel grouping harmony searchheuristics , 2013, Eng. Appl. Artif. Intell..

[37]  Lin Han,et al.  A Novel Opposition-Based Particle Swarm Optimization for Noisy Problems , 2007, Third International Conference on Natural Computation (ICNC 2007).

[38]  Ching-Yuen Chan,et al.  An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection , 2012, Comput. Math. Appl..

[39]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[40]  Reşat Selbaş,et al.  A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view , 2006 .

[41]  Min Zeng,et al.  Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles , 2009 .

[42]  Z. Geem Optimal cost design of water distribution networks using harmony search , 2006 .

[43]  Frank Kreith,et al.  CRC Handbook of Thermal Engineering , 1999 .

[44]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[45]  A. P. Fraas,et al.  HEAT EXCHANGER DESIGN CHARTS , 1952 .

[46]  A. Panchal,et al.  Harmony Search Optimization for HDR Prostate Brachytherapy , 2008 .

[47]  Hamid R. Tizhoosh,et al.  Applying Opposition-Based Ideas to the Ant Colony System , 2007, 2007 IEEE Swarm Intelligence Symposium.

[48]  Bijaya K. Panigrahi,et al.  Discrete harmony search based expert model for epileptic seizure detection in electroencephalography , 2012, Expert Syst. Appl..

[49]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[50]  Klaus D. Timmerhaus,et al.  Plant design and economics for chemical engineers , 1958 .

[51]  B. V. Babu,et al.  Differential evolution strategies for optimal design of shell-and-tube heat exchangers , 2007 .

[52]  Javier Del Ser,et al.  On the design of a novel two-objective harmony search approach for distance- and connectivity-based localization in wireless sensor networks , 2013, Eng. Appl. Artif. Intell..

[53]  Shahryar Rahnamayan,et al.  Opposition-Based Differential Evolution Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[54]  Louis Gosselin,et al.  Minimizing shell‐and‐tube heat exchanger cost with genetic algorithms and considering maintenance , 2007 .

[55]  M. Fesanghary,et al.  Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm , 2009 .

[56]  K. S. Swarup,et al.  Environmental/economic dispatch using multi-objective harmony search algorithm , 2011 .

[57]  Z. Geem Optimal Design of Water Distribution Networks Using Harmony Search , 2009 .

[58]  I. Ozkol,et al.  Determination of the Optimum Geometry of the Heat Exchanger Body Via A Genetic Algorithm , 2005 .

[59]  Amin Hadidi,et al.  Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm , 2013 .

[60]  Amitava Chatterjee,et al.  Design of a Hybrid Stable Adaptive Fuzzy Controller Employing Lyapunov Theory and Harmony Search Algorithm , 2010, IEEE Transactions on Control Systems Technology.

[61]  Vahid Azizi,et al.  A new biped locomotion involving arms swing based on neural network with harmony search optimizer , 2011, 2011 IEEE International Conference on Automation and Logistics (ICAL).

[62]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[63]  Antonio Casimiro Caputo,et al.  Heat exchanger design based on economic optimisation , 2008 .

[64]  Donald Quentin Kern,et al.  Process heat transfer , 1950 .

[65]  R. V. Rao,et al.  Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique , 2010 .

[66]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[67]  Aditya Panchal,et al.  Harmony Search in Therapeutic Medical Physics , 2009 .

[68]  Geoffrey F. Hewitt Heat exchanger design handbook, 1998 , 1998 .

[69]  J. P. Hartnett,et al.  Handbook of heat transfer applications (2nd edition) , 1985 .

[70]  A. B. Dariane,et al.  Performance evaluation of an improved harmony search algorithm for numerical optimization: Melody Search (MS) , 2013, Eng. Appl. Artif. Intell..

[71]  Amin Hadidi,et al.  A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view , 2013 .

[72]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[73]  R. Serth,et al.  Process Heat Transfer , 1994 .

[74]  Mehmet Polat Saka,et al.  Optimum design of cellular beams using harmony search and particle swarm optimizers , 2011 .

[75]  Xiaolei Wang,et al.  A hybrid optimization method of harmony search and opposition-based learning , 2012 .