On the Importance of Nonlinear Modeling in Computer Performance Prediction

Computers are nonlinear dynamical systems that exhibit complex and sometimes even chaotic behavior. The low-level performance models used in the computer systems community, however, are linear. This paper is an exploration of that disconnect: when linear models are adequate for predicting computer performance and when they are not. Specifically, we build linear and nonlinear models of the processor load of an Intel i7-based computer as it executes a range of different programs. We then use those models to predict the processor loads forward in time and compare those forecasts to the true continuations of the time series.

[1]  Engin Ipek,et al.  Dynamic Multicore Resource Management: A Machine Learning Approach , 2009, IEEE Micro.

[2]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[3]  J. Zidek,et al.  ON SEGMENTED MULTIVARIATE REGRESSION , 1997 .

[4]  Paul R. Cohen,et al.  Advances in Intelligent Data Analysis IX, 9th International Symposium, IDA 2010, Tucson, AZ, USA, May 19-21, 2010. Proceedings , 2010, IDA.

[5]  Michael F. P. O'Boyle,et al.  Rapidly Selecting Good Compiler Optimizations using Performance Counters , 2007, International Symposium on Code Generation and Optimization (CGO'07).

[6]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[7]  Chen Fu,et al.  Automatically finding performance problems with feedback-directed learning software testing , 2012, 2012 34th International Conference on Software Engineering (ICSE).

[8]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[9]  George Ho,et al.  PAPI: A Portable Interface to Hardware Performance Counters , 1999 .

[10]  Olivier Temam,et al.  Chaos in computer performance , 2005, Chaos.

[11]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[12]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Kennel,et al.  Method to distinguish possible chaos from colored noise and to determine embedding parameters. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  Andreas Bender,et al.  Collaboration-Based Function Prediction in Protein-Protein Interaction Networks , 2011, International Symposium on Intelligent Data Analysis.

[15]  Michael Small,et al.  Predicting the outcome of roulette. , 2012, Chaos.

[16]  Amer Diwan,et al.  Measurement and Dynamical Analysis of Computer Performance Data , 2010, IDA.

[17]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[18]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[19]  Joshua Garland,et al.  Predicting Computer Performance Dynamics , 2011, IDA.

[20]  Julian J. Faraway,et al.  Practical Regression and Anova using R , 2002 .

[21]  Amer Diwan,et al.  Computer systems are dynamical systems. , 2009, Chaos.

[22]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[23]  Amer Diwan,et al.  Supporting experiments in computer systems research , 2010 .

[24]  Raj Jain,et al.  The art of computer systems performance analysis - techniques for experimental design, measurement, simulation, and modeling , 1991, Wiley professional computing.

[25]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[26]  Thomas A. Bass The Eudaemonic Pie , 1985 .

[27]  Doug Burger,et al.  Measuring Experimental Error in Microprocessor Simulation , 2001, ISCA 2001.

[28]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[29]  Dirk Grunwald,et al.  Methods for modeling resource contention on simultaneous multithreading processors , 2005, 2005 International Conference on Computer Design.

[30]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[31]  Joshua Garland,et al.  Iterated function system models in data analysis: detection and separation. , 2011, Chaos.