Uncovering Hierarchical Structure in Social Networks Using Isospectral Reductions

We introduce a flexible method for determining the hierarchical structure of a network based on the theory of isospectral network reductions. To illustrate the usefulness of this approach we apply our procedure to the Southern Women Data Set, one of the most studied of all social networks. We find that these techniques provide new information that is consistent in a number of ways to previous results regarding this network but that is also complementary to these earlier findings.

[1]  Eigenvectors of isospectral graph transformations , 2014, 1412.7130.

[2]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[3]  Matthieu Latapy,et al.  Basic notions for the analysis of large two-mode networks , 2008, Soc. Networks.

[4]  Kenneth A. Frank,et al.  Identifying positions from affiliation networks: Preserving the duality of people and events , 2006, Soc. Networks.

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  Kan Li,et al.  A Vertex Similarity Probability Model for Finding Network Community Structure , 2012, PAKDD.

[7]  Tanya Y. Berger-Wolf,et al.  A framework for analysis of dynamic social networks , 2006, KDD '06.

[8]  Daniel Neagu,et al.  Bipartite network model for inferring hidden ties in crime data , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[9]  Kristina Lerman,et al.  Structure of Heterogeneous Networks , 2009, 2009 International Conference on Computational Science and Engineering.

[10]  Murray Aitkin,et al.  Statistical modelling of the group structure of social networks , 2014, Soc. Networks.

[11]  Tore Opsahl Triadic closure in two-mode networks: Redefining the global and local clustering coefficients , 2013, Soc. Networks.

[12]  G. Sabidussi,et al.  Graph symmetry : algebraic methods and applications , 1997 .

[13]  Linton C. Freeman,et al.  The Sociological Concept of "Group": An Empirical Test of Two Models , 1992, American Journal of Sociology.

[14]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[15]  B. Webb,et al.  Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks , 2010, 1010.3272.

[16]  Tsuyoshi Murata,et al.  Community Detection in Large-Scale Bipartite Networks , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[17]  Lc Freeman,et al.  USING GALOIS LATTICES TO REPRESENT NETWORK DATA , 1993 .

[18]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[19]  Patrick De Causmaecker,et al.  Visualization of networked collaboration in digital ecosystems through two-mode network patterns , 2011, MEDES.

[20]  L. Bunimovich,et al.  Isospectral Transformations: A New Approach to Analyzing Multidimensional Systems and Networks , 2014 .

[21]  Vladimir Batagelj,et al.  Generalized blockmodeling of two-mode network data , 2004, Soc. Networks.

[22]  Michael J. Brusco,et al.  Analysis of two-mode network data using nonnegative matrix factorization , 2011, Soc. Networks.

[23]  Martin G. Everett,et al.  Network analysis of 2-mode data , 1997 .

[24]  Vincent Duquenne,et al.  A note on regular colorings of two mode data , 1993 .

[25]  Camille Roth,et al.  Reducing the Representation Complexity of Lattice-Based Taxonomies , 2007, ICCS.

[26]  Vladimir Batagelj,et al.  Generalized two-mode cores , 2015, Soc. Networks.

[27]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[28]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[29]  George C. Homans Human Group , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[30]  Tore Opsahl,et al.  Clustering in weighted networks , 2009, Soc. Networks.

[31]  Phillip Bonacich,et al.  Latent classes and group membership , 1981 .

[32]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[33]  Burleigh B. Gardner,et al.  Deep South: A Social Anthropological Study of Caste and Class , 1942 .

[34]  Martin G. Everett,et al.  The dual-projection approach for two-mode networks , 2013, Soc. Networks.

[35]  Phillip Bonacich,et al.  Using Boolean Algebra to Analyze Overlapping Memberships , 1978 .

[36]  Vladimir Batagelj,et al.  Analysis and visualization of 2-mode networks , 2002 .

[37]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Changjie Tang,et al.  An MDL approach to efficiently discover communities in bipartite network , 2010, Journal of Central South University.

[39]  Václav Snásel,et al.  2009 Advances in Social Network Analysis and Mining Reducing Social Network Dimensions Using Matrix Factorization Methods , 2022 .

[40]  Katherine Faust Centrality in affiliation networks , 1997 .

[41]  W. Barrett,et al.  Equitable decompositions of graphs with symmetries , 2017 .

[42]  L. Freeman Finding Social Groups: A Meta-Analysis of the Southern Women Data , 2003 .

[43]  J. A. Almendral,et al.  Dynamical and spectral properties of complex networks , 2007, 0705.3216.

[44]  Linton C. Freeman,et al.  Social Network Visualization, Methods of , 2009, Encyclopedia of Complexity and Systems Science.

[45]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[46]  Phillip Bonacich,et al.  Simultaneous group and individual centralities , 1991 .

[47]  Tsuyoshi Murata A New Tripartite Modularity for Detecting Communities , 2011 .

[48]  John Skvoretz,et al.  8. Logit Models for Affiliation Networks , 1999 .