Particle-based anisotropic surface meshing

This paper introduces a particle-based approach for anisotropic surface meshing. Given an input polygonal mesh endowed with a Riemannian metric and a specified number of vertices, the method generates a metric-adapted mesh. The main idea consists of mapping the anisotropic space into a higher dimensional isotropic one, called "embedding space". The vertices of the mesh are generated by uniformly sampling the surface in this higher dimensional embedding space, and the sampling is further regularized by optimizing an energy function with a quasi-Newton algorithm. All the computations can be re-expressed in terms of the dot product in the embedding space, and the Jacobian matrices of the mappings that connect different spaces. This transform makes it unnecessary to explicitly represent the coordinates in the embedding space, and also provides all necessary expressions of energy and forces for efficient computations. Through energy optimization, it naturally leads to the desired anisotropic particle distributions in the original space. The triangles are then generated by computing the Restricted Anisotropic Voronoi Diagram and its dual Delaunay triangulation. We compare our results qualitatively and quantitatively with the state-of-the-art in anisotropic surface meshing on several examples, using the standard measurement criteria.

[1]  Joshua A. Levine,et al.  Particle systems for adaptive, isotropic meshing of CAD models , 2012, Engineering computations.

[2]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[3]  J. Nash C 1 Isometric Imbeddings , 1954 .

[4]  Raanan Fattal Blue-noise point sampling using kernel density model , 2011, SIGGRAPH 2011.

[5]  Michael Garland,et al.  Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..

[6]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[7]  Albert Cohen,et al.  Greedy bisection generates optimally adapted triangulations , 2012, Math. Comput..

[8]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[9]  Bruno Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[10]  Chi-Wing Fu,et al.  Anisotropic blue noise sampling , 2010, SIGGRAPH 2010.

[11]  K. Shimada,et al.  Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles , 2007 .

[12]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[13]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[14]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.

[15]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[16]  Ross T. Whitaker,et al.  Robust particle systems for curvature dependent sampling of implicit surfaces , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[17]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[18]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[19]  David Letscher,et al.  Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.

[20]  Jin Huang,et al.  A wave-based anisotropic quadrangulation method , 2010, SIGGRAPH 2010.

[21]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[22]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[23]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[24]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part II: Validations and Applications , 2011, SIAM J. Numer. Anal..

[25]  Dong-Ming Yan,et al.  Obtuse triangle suppression in anisotropic meshes , 2011, Comput. Aided Geom. Des..

[26]  Jean-Daniel Boissonnat,et al.  Stability of Delaunay-type structures for manifolds: [extended abstract] , 2012, SoCG '12.

[27]  Mariette Yvinec,et al.  Locally uniform anisotropic meshing , 2008, SCG '08.

[28]  Sunil Arya,et al.  ANN: library for approximate nearest neighbor searching , 1998 .

[29]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[30]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH Courses.

[31]  Steven J. Gortler,et al.  Surface remeshing in arbitrary codimensions , 2006, The Visual Computer.

[32]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[33]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[34]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[35]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[36]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[37]  Houman BOROUCHAKIyUTT,et al.  Surface Mesh Evaluation , 1997 .

[38]  Kenji Shimada,et al.  Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing , 1995, SMA '95.

[39]  L. Cohen,et al.  Surface segmentation using geodesic centroidal tesselation , 2004 .

[40]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[41]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[42]  Herbert Edelsbrunner,et al.  Triangulating Topological Spaces , 1997, Int. J. Comput. Geom. Appl..

[43]  Albert Cohen,et al.  Anisotropic Smoothness Classes: From Finite Element Approximation to Image Models , 2010, Journal of Mathematical Imaging and Vision.

[44]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[45]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[46]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[47]  Tamal K. Dey,et al.  Polygonal surface remeshing with Delaunay refinement , 2010, Engineering with Computers.

[48]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[49]  Mariette Yvinec,et al.  Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.

[50]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[51]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[52]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[53]  M. I. Freidlin On the Factorization of Non-Negative Definite Matrices , 1968 .

[54]  Denis Zorin,et al.  Anisotropic quadrangulation , 2010, SPM '10.

[55]  J. Michael Owen,et al.  Adaptive smoothed particle hydrodynamics, with application to cosmology: Methodology , 1996 .

[56]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.