A Hybrid Modelling Approach for Reverse Osmosis Processes Including Fouling

[1]  Ward Quaghebeur,et al.  Hybrid modelling of water resource recovery facilities: status and opportunities. , 2022, Water science and technology : a journal of the International Association on Water Pollution Research.

[2]  B. De Baets,et al.  Hybrid differential equations: Integrating mechanistic and data-driven techniques for modelling of water systems. , 2022, Water research.

[3]  K. Cho,et al.  Deep learning model for simulating influence of natural organic matter in nanofiltration. , 2021, Water research.

[4]  M. Yaqub,et al.  Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network , 2020 .

[5]  I. Nopens,et al.  A generic reverse osmosis model for full-scale operation , 2020 .

[6]  Ali Diabat,et al.  Mathematical and optimization modelling in desalination: State-of-the-art and future direction , 2019, Desalination.

[7]  A. Chaudhuri,et al.  Numerical modeling of particulate fouling and cake-enhanced concentration polarization in roto-dynamic reverse osmosis filtration systems , 2019, Desalination.

[8]  N. Hilal,et al.  Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination? , 2019, Desalination.

[9]  M. Bagheri,et al.  Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review , 2019, Process Safety and Environmental Protection.

[10]  V. Venkatasubramanian The promise of artificial intelligence in chemical engineering: Is it here, finally? , 2018, AIChE Journal.

[11]  Ruby C. Daamen,et al.  Modeling fouling in a large RO system with artificial neural networks , 2018 .

[12]  Shanxue Jiang,et al.  A review of reverse osmosis membrane fouling and control strategies. , 2017, The Science of the total environment.

[13]  I. Nopens,et al.  PCA as tool for intelligent ultrafiltration for reverse osmosis seawater desalination pretreatment , 2017 .

[14]  René Ruby-Figueroa,et al.  Permeate flux prediction in the ultrafiltration of fruit juices by ARIMA models , 2017 .

[15]  Mohd Azlan Hussain,et al.  A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant , 2017 .

[16]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[17]  Haigang Li,et al.  Modeling organic fouling of reverse osmosis membrane: From adsorption to fouling layer formation , 2016 .

[18]  Sang-Hyuk Park,et al.  Application of Transfer Function ARIMA Modeling for the Sedimentation Process on Water Treatment Plant , 2015 .

[19]  A. Chivas,et al.  Chemical cleaning effects on properties and separation efficiency of an RO membrane , 2015 .

[20]  A. R. Kurdian,et al.  MODELING, OPTIMIZATION, AND CONTROL OF REVERSE OSMOSIS WATER TREATMENT IN KAZEROON POWER PLANT USING NEURAL NETWORK , 2015 .

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  B. Mamba,et al.  Influence of organic, colloidal and combined fouling on NF rejection of NaCl and carbamazepine: Role of solute–foulant–membrane interactions and cake-enhanced concentration polarisation , 2014 .

[23]  M. V. van Loosdrecht,et al.  Spacer geometry and particle deposition in spiral wound membrane feed channels. , 2014, Water research.

[24]  Sebastião Feyo de Azevedo,et al.  Hybrid semi-parametric modeling in process systems engineering: Past, present and future , 2014, Comput. Chem. Eng..

[25]  Joon Ha Kim,et al.  A fouling model for simulating long-term performance of SWRO desalination process , 2012 .

[26]  Wei Ma,et al.  A model of estimating scaling potential in reverse osmosis and nanofiltration systems , 2012 .

[27]  A. Chivas,et al.  Effects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes , 2011 .

[28]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[29]  Joon Ha Kim,et al.  Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant. , 2009 .

[30]  Panagiotis D. Christofides,et al.  Nonlinear Model-Based Control of an Experimental Reverse-Osmosis Water Desalination System , 2009 .

[31]  Robert Rallo,et al.  Neural network approach for modeling the performance of reverse osmosis membrane desalting , 2009 .

[32]  Eric M.V. Hoek,et al.  Modeling the effects of fouling on full-scale reverse osmosis processes , 2008 .

[33]  W. Siegers,et al.  Influence of calcium-NOM complexes on fouling of nanofiltration membranes in drinking water production , 2006 .

[34]  Peter A Vanrolleghem,et al.  Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant. , 2005, Journal of biotechnology.

[35]  Lianfa Song,et al.  The development of membrane fouling in full-scale RO processes , 2004 .

[36]  M. Elimelech,et al.  Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. , 2003, Environmental science & technology.

[37]  Michel Cabassud,et al.  Neural networks: a tool to improve UF plant productivity , 2002 .

[38]  Jeffrey E. Jarrett,et al.  Transfer Function Modeling of Processes with Dynamic Inputs , 2002 .

[39]  Kun Soo Chang,et al.  Hybrid neural network modeling of a full-scale industrial wastewater treatment process. , 2002, Biotechnology and bioengineering.

[40]  Michel Cabassud,et al.  Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production , 2000 .

[41]  T. McAvoy,et al.  Use of Hybrid Models in Wastewater Systems , 2000 .

[42]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[43]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[44]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[45]  R. L. Riley,et al.  Transport properties of cellulose acetate osmotic membranes , 1965 .

[46]  Evangelos Spiliotis,et al.  The M4 Competition: 100,000 time series and 61 forecasting methods , 2020 .

[47]  R. Vilanova,et al.  A Recurrent Neural Network for Wastewater Treatment Plant effluents’ prediction , 2018 .

[48]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[49]  Johannes S. Vrouwenvelder,et al.  Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data , 2010 .

[50]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[51]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[52]  G. Schock,et al.  Mass transfer and pressure loss in spiral wound modules , 1987 .