The Pan-STARRS Data-processing System

The Pan-STARRS Data Processing System is responsible for the steps needed to downloaded, archive, and process all images obtained by the Pan-STARRS telescopes, including real-time detection of transient sources such as supernovae and moving objects including potentially hazardous asteroids. With a nightly data volume of up to 4 terabytes and an archive of over 4 petabytes of raw imagery, Pan-STARRS is solidly in the realm of Big Data astronomy. The full data processing system consists of several subsystems covering the wide range of necessary capabilities. This article describes the Image Processing Pipeline and its connections to both the summit data systems and the outward-facing systems downstream. The latter include the Moving Object Processing System (MOPS) & the public database: the Published Science Products Subsystem (PSPS).

[1]  J. Koppenhoefer,et al.  PROPERTIES OF M31. V. 298 ECLIPSING BINARIES FROM PAndromeda , 2014, 1411.1115.

[2]  Peter M. Onaka,et al.  The Pan-STARRS Gigapixel Camera #1 and STARGRASP controller results and performance , 2008, Astronomical Telescopes + Instrumentation.

[3]  Larry Denneau,et al.  The Pan-STARRS Moving Object Processing System , 2013, 1302.7281.

[4]  Klaus W. Hodapp,et al.  Optical design of the Pan-STARRS telescopes , 2004, SPIE Astronomical Telescopes + Instrumentation.

[5]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[6]  Ž. Ivezić,et al.  FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3π DATA , 2015, 1511.05527.

[7]  R. J. Wainscoat,et al.  THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1 , 2008, 1109.5080.

[8]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[9]  R. J. Wainscoat,et al.  Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.

[10]  P. A. Price,et al.  Pan-STARRS Pixel Analysis: Source Detection and Characterization , 2016, The Astrophysical Journal Supplement Series.

[11]  T. Grav,et al.  PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1 , 2011, 1109.6320.

[12]  Rob Seaman,et al.  A Tiled-Table Convention for Compressing FITS Binary Tables , 2012, ArXiv.

[13]  Eugene Magnier,et al.  MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1 , 2014, 1401.1508.

[14]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[15]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[16]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[17]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[18]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[19]  Brian McLean,et al.  The Guide Star Catalog. III. Production, database organisation, and population statistics. , 1990 .

[20]  Eugene A. Magnier,et al.  The Elixir System: Data Characterization and Calibration at the Canada‐France‐Hawaii Telescope , 2004 .

[21]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[22]  Brian McLean,et al.  The Guide Star Catalog. I. Astronomical Foundations and Image Processing , 1990 .