Modelling Frontal Discontinuities in Wind Fields

A Bayesian procedure for the retrieval of wind vectors over the ocean using satellite-borne scatterometers requires realistic prior near-surface wind field models over the oceans. We have implemented carefully chosen vector Gaussian Process models; however, in some cases these models are too smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometer observations, fronts appear as discontinuities in wind direction. Due to the nature of the retrieval problem a simple discontinuity model is not feasible, and hence we have developed a constrained discontinuity vector Gaussian Process model which ensures realistic fronts. We describe the generative model and show how to compute the data likelihood given the model. We show the results of inference using the model with Markov Chain Monte Carlo methods on both synthetic and real data.

[1]  Raymond H. Myers,et al.  Probability and Statistics for Engineers and Scientists. , 1973 .

[2]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[3]  R. Daley Atmospheric Data Analysis , 1991 .

[4]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[5]  Gérald Desroziers,et al.  A Coordinate Transformation for Objective Frontal Analysis , 1993 .

[6]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[7]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[8]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[9]  David G. Long,et al.  Wind field model-based estimation of seasat scatterometer winds , 1993 .

[10]  D. Offiler The Calibration of ERS-1 Satellite Scatterometer Winds , 1994 .

[11]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[12]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[13]  David L. T. Anderson,et al.  Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4 , 1997 .

[14]  T. Hewson Objective fronts , 1998 .

[15]  Dan Cornford,et al.  Flexible Gaussian process wind field models , 1998 .

[16]  Dan Cornford,et al.  Adding Constrained Discontinuities to Gaussian Process Models of Wind Fields , 1998, NIPS.

[17]  Dan Cornford,et al.  Bayesian inference for wind field retrieval , 2000, Neurocomputing.

[18]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.