Reconstruction of serially acquired slices using physics-based modeling

This paper presents an accurate, computationally efficient, fast, and fully automated algorithm for the alignment of two-dimensional (2-D) serially acquired sections forming a 3-D volume. The approach relies on the determination of interslice correspondences. The features used for correspondence are extracted by a 2-D physics-based deformable model parameterizing the object shape. Correspondence affinities and global constrains render the method efficient and reliable. The method accounts for one of the major shortcomings of 2-D slices alignment of a 3-D volume, namely variable and nonuniform thickness of the slices. Moreover, no particular alignment direction is privileged, avoiding global offsets, biases, and error propagation. The method was evaluated on real images and the experimental results demonstrated its accuracy, as reconstruction errors were smaller than I degree in rotation and smaller than 1 pixel in translation.

[1]  Alex Pentland,et al.  Recovery of non-rigid motion and structure , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  L. Cohen,et al.  Analyzing the Deformation of the Left Ventricle of the Heart with a Parametric Deformable Model , 1996 .

[3]  N. E. Larsen,et al.  Computer-assisted alignment of standard serial sections without use of artificial landmarks. A practical approach to the utilization of incomplete information in 3-D reconstruction of the hippocampal region , 1992, Journal of Neuroscience Methods.

[4]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[6]  K. Bathe Finite Element Procedures , 1995 .

[7]  Chahab Nastar,et al.  Modèles physiques déformables et modes vibratoires pour l'analyse du mouvement non-rigide dans les images multidimensionnelles , 1994 .

[8]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[9]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[10]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Michael J. Black,et al.  On the unification of line processes , 1996 .

[15]  Gunilla Borgefors,et al.  On Digital Distance Transforms in Three Dimensions , 1996, Comput. Vis. Image Underst..

[16]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[17]  Alberto F. Goldszal,et al.  Three-Dimensional Reconstruction of Activated Columns from 2-[14C]Deoxy-d-glucose Data , 1995, NeuroImage.

[18]  Nicholas Ayache,et al.  Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Sebastien Ourselin,et al.  Automatic alignement of histological sections for 3D reconstruction and analysis , 1998 .

[20]  G. Bueno,et al.  A joint physics-based statistical deformable model for multimodal brain image analysis , 2001, IEEE Transactions on Medical Imaging.

[21]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[22]  Tzay Y. Young,et al.  Registration and three-dimensional reconstruction of autoradiographic images by the disparity analysis method , 1993, IEEE Trans. Medical Imaging.

[23]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[24]  Ioannis Pitas,et al.  Optical flow estimation and moving object segmentation based on median radial basis function network , 1998, IEEE Trans. Image Process..

[25]  P. Danielsson Euclidean distance mapping , 1980 .

[26]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[27]  Ching-Shoei Chiang The Euclidean distance transform , 1992 .

[28]  James S. Duncan,et al.  A Robust Point Matching Algorithm for Autoradiograph Alignment , 1996, VBC.

[29]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[31]  Lyndon S. Hibbard,et al.  Objective image alignment for three-dimensional reconstruction of digital autoradiograms , 1988, Journal of Neuroscience Methods.

[32]  Charles R. Meyer,et al.  Mutual Information for Automated Unwarping of Rat Brain Autoradiographs , 1997, NeuroImage.