Fifty years of homotopy theory

The subject of homotopy theory may be said to have begun in 1930 with the discovery of the Hopf map. Since I began to work under Norman Steenrod as a graduate student at Chicago in 1939 and received my Ph.D. in 1941, I have been active in the field for all but the first ten years of its existence. Thus the present account of the development of the subject is based, to a large extent, on my own recollections. I have divided my discussion into two parts, the first covering the period from 1930 to about 1960 and the second from 1960 to the present. Each part is accompanied by a diagram showing the connections among the results discussed, and one reason for the twofold division is the complication of the diagram that would result were we to attempt to merge the two eras into one. The dating given in this paper reflects, not the publication dates of the papers involved, but, as nearly as I can determine them, the actual dates of discovery. In many cases, this is based on my own memory; this failing, I have used the date of the earliest announcement in print of the result (for example, as the abstract of a paper presented to the American Mathematical Society or as a note in the Comptes Rendus or the Proceedings of the National Academy). Failing these, I have used the date of submission of the paper, whenever available. Only in the last resort have I used the actual publication date. I wish to thank my many friends who have made pertinent comments, and helped refresh my memory on a number of points. Particular thanks are due to Saunders Mac Lane, William S. Massey, and Franklin P. Peterson. I also wish to acknowledge that my exposition of the solution of the immersion conjecture was based on a seminar talk by Professor Peterson on the same subject.

[1]  H. Hopf Die Klassen der Abbildungen dern-dimensionalen Polyeder auf dien-dimensionale Sphäre , 1933 .

[2]  N. Steenrod,et al.  Homotopy Relations in Fibre Spaces. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. L. Blakers,et al.  The Homotopy Groups of a Triad. III , 1951 .

[4]  J. Milnor On the Cobordism Ring Ω ∗ and a Complex Analogue, Part I , 1960 .

[5]  S. Novikov THE METHODS OF ALGEBRAIC TOPOLOGY FROM THE VIEWPOINT OF COBORDISM THEORY , 1967 .

[6]  E. F. Whittlesey Finite Surfaces a Study of Finite 2-Complexes , 1960 .

[7]  Jean-Pierre Serre,et al.  Cohomologie modulo 2 des complexes d’Eilenberg-MacLane , 1953 .

[8]  H. Toda Complex of the standard paths and n-ad homotopy groups , 1955 .

[9]  S. Araki,et al.  TOPOLOGY OF Hn-SPACES AND H-SQUARING OPERATIONS. , 1956 .

[10]  G. Whitehead A Generalization of the Hopf Invariant , 1950 .

[11]  G. Whitehead Homotopy groups of joins and unions , 1956 .

[12]  M. Atiyah,et al.  Vector bundles and homogeneous spaces , 1961 .

[13]  M. Hirsch Immersions of manifolds , 1959 .

[14]  H. Whitney,et al.  Sphere-Spaces. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Spanier,et al.  DUALITY IN RELATIVE HOMOTOPY THEORY , 1958 .

[16]  W. Massey,et al.  The mod 2 cohomology structure of certain fibre spaces , 1967 .

[17]  E. Curtis,et al.  The mod-p lower central series and the Adams spectral sequence , 1966 .

[18]  G. Whitehead Algebraic Topology – A Student's Guide: On the Freudenthal theorems , 1953 .

[19]  H. Hopf Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension , 1935 .

[20]  D. S. Kahn,et al.  Applications of the transfer to stable homotopy theory , 1972 .

[21]  Michael Atiyah,et al.  Bordism and Cobordism , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  H. Hopf Fundamentalgruppe und zweite Bettische Gruppe , 1941 .

[23]  J. Whitehead,et al.  On Adding Relations to Homotopy Groups , 1941 .

[24]  Shichirô Oka The stable homotopy groups of spheres. III , 1971 .

[25]  R L Cohen,et al.  Immersions of manifolds. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Hopf Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n-dimensionale Sphäre , 1964 .

[27]  N. Steenrod Reduced Powers of Cohomology Classes , 1952 .

[28]  V. Snaith A Stable Decomposition of ωNSnX , 1974 .

[29]  Relations among characteristic classes , 1978 .

[30]  Samuel Eilenberg,et al.  Cohomology and Continuous Mappings , 1940 .

[31]  J. Adams,et al.  On the structure and applications of the steenrod algebra , 1958 .

[32]  E. Dyer,et al.  Homology of Iterated Loop Spaces , 1962 .

[33]  Larry Smith ON REALIZING COMPLEX BORDISM MODULES II Applications to the Stable Homotopy Groups of Spheres. , 1971 .

[34]  J. Whitehead,et al.  On Incidence Matrices, Nuclei and Homotopy Types , 1941 .

[35]  I. James REDUCED PRODUCT SPACES , 1955 .

[36]  M. Mahowald A new infinite family in 2π∗S☆ , 1977 .

[37]  H. Toda Composition Methods in Homotopy Groups of Spheres , 1962 .

[38]  J. Leray,et al.  L'anneau spectral et l'anneau filtré d'homologie d'un espace localement compact et d'une application continue , 1950 .

[39]  Peter Hilton,et al.  On the Homotopy Groups of the Union of Spheres , 1955 .

[40]  H. Toda Generalized Whitehead products and homotopy groups of spheres , 1952 .

[41]  Samuel Eilenberg,et al.  On the relation between the fundamental group on a space and the higher homotopy groups , 1939 .

[42]  Graeme Segal,et al.  Configuration-spaces and iterated loop-spaces , 1973 .

[43]  Marston Morse The Calculus of Variations in the Large , 1934 .

[44]  J. Whitehead,et al.  OBSTRUCTIONS TO COMPRESSION , 1955 .

[45]  R. Thom Quelques propriétés globales des variétés différentiables , 1954 .

[46]  E. Brown,et al.  A spectrum whose Zp cohomology is the algebra of reduced pth powers , 1966 .

[47]  Jean-Pierre Serre,et al.  Homologie Singuliere Des Espaces Fibres , 1951 .

[48]  Edgar H. Brown,et al.  FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES , 1957 .

[49]  D. Quillen On the formal group laws of unoriented and complex cobordism theory , 1969 .

[50]  Duality in homotopy theory , 1955 .

[51]  K. Borsuk On the Lusternik-Schnirelmann category in the theory of shape , 1978 .

[52]  I. James ON THE SUSPENSION TRIAD , 1956 .

[53]  H. Toda,et al.  Non-triviality of an element in the stable homotopy groups of spheres , 1975 .

[54]  Hlawka The calculus of variations in the large , 1939 .

[55]  E. Brown,et al.  On immersions of n-Manifolds , 1977 .

[56]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[57]  S. Maclane,et al.  Relations Between Homology and Homotopy Groups of Spaces. II , 1945 .

[58]  J. M. Boardman,et al.  Homotopy Invariant Algebraic Structures on Topological Spaces , 1973 .

[59]  H. Toda On spectra realizing exterior parts of the steenrod algebra , 1971 .

[60]  G. Whitehead The (n + 2) nd Homotopy Group of the n-Sphere , 1950 .

[61]  H. Hopf,et al.  Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .

[62]  C. Wall Determination of the Cobordism Ring , 1960 .

[63]  H. Whitney The maps of an $n$-complex into an $n$-sphere , 1937 .

[64]  J. Adem The Relations on Steenrod Powers of Cohomology Classes , 1957 .

[65]  E. Spanier THE THEORY OF CARRIERS AND S-THEORY , 1962 .

[66]  S. Gitler,et al.  A spectrum whose cohomology is a certain cyclic module over the steenrod algebra , 1973 .

[67]  Jean-Pierre Serre,et al.  Groupes d'homotopie et classes des groupes abeliens , 1953 .

[68]  R. Bott The Stable Homotopy of the Classical Groups , 1959 .

[69]  D. Ravenel,et al.  Periodic phenomena in the Adams-Novikov spectral sequence , 1977 .

[70]  W. Massey,et al.  The 2 cohomology structure of certain fibre spaces , 1967 .

[71]  H. Whitney Topological properties of differentiable manifolds , 1937 .

[72]  Larry Smith On Realizing Complex Bordism Modules: Applications to the Stable Homotopy of Spheres , 1970 .

[73]  R. James Milgram Iterated loop spaces , 1966 .

[74]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[75]  I. James THE SUSPENSION TRIAD OF A SPHERE , 1956 .

[76]  J. Adams,et al.  On the Non-Existence of Elements of Hopf Invariant One , 1960 .

[77]  G. Whitehead Generalized homology theories , 1962 .

[78]  H. Whitney On the Theory of Sphere-Bundles. , 1940, Proceedings of the National Academy of Sciences of the United States of America.

[79]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .

[80]  E. Brown,et al.  The structure of the Spin cobordism ring , 1967 .

[81]  J. Milnor THE STEENROD ALGEBRA AND ITS DUAL1 , 1958 .

[82]  J. H. C. Whitehead,et al.  Duality in Relative Homotopy Theory , 1958 .

[83]  E. Brown,et al.  A universal space for normal bundles ofn-manifolds , 1979 .

[84]  W Hurewicz,et al.  ON THE CONCEPT OF FIBER SPACE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[85]  N. Steenrod,et al.  Products of Cocycles and Extensions of Mappings , 1947 .

[86]  W. Browder,et al.  Homology operations and loop spaces , 1960 .

[87]  S. Maclane,et al.  Relations between Homology and Homotopy Groups. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[88]  W. Massey,et al.  The Homotopy Groups of a Triad. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[89]  N. Steenrod Topology of Fibre Bundles , 1951 .

[90]  Nobuyuki Oda,et al.  DETERMINATION OF 2-COMPONENTS OF THE 23 AND 24-STEMS IN HOMOTOPY GROUPS OF SPHERES , 1975 .

[91]  E. Brown,et al.  Relations among characteristic classes—I , 1964 .

[92]  R. Zahler,et al.  Nontriviality of the stable homotopy element °1 , 1974 .

[93]  J. Whitehead,et al.  On the Realizability of Homotopy Groups , 1949 .