Learning and Evolution in Games: An Overview

The theory of learning and evolution in games provides models of disequilibrium behaviour in strategic settings. Much of the theory focuses on whether and when disequilibrium behaviour will resolve in equilibrium play, and, if it does, on predicting which equilibrium will be played. But the theory also offers techniques for characterizing perpetual disequilibrium play.

[1]  J. Weibull,et al.  Nash Equilibrium and Evolution by Imitation , 1994 .

[2]  William H. Sandholm,et al.  Pairwise Comparison Dynamics and Evolutionary Foundations for Nash Equilibrium , 2009, Games.

[3]  William H. Sandholm,et al.  ON THE GLOBAL CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY , 2002 .

[4]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[5]  H. Peyton Young,et al.  Learning, hypothesis testing, and Nash equilibrium , 2003, Games Econ. Behav..

[6]  M. Benaïm,et al.  Deterministic Approximation of Stochastic Evolution in Games , 2003 .

[7]  John Nachbar,et al.  Beliefs in Repeated Games , 2003 .

[8]  Glenn Ellison Learning, Local Interaction, and Coordination , 1993 .

[9]  Lawrence E. Blume,et al.  How noise matters , 2003, Games Econ. Behav..

[10]  J. Robinson AN ITERATIVE METHOD OF SOLVING A GAME , 1951, Classics in Game Theory.

[11]  H. Peyton Young,et al.  Stochastic Evolutionary Game Dynamics , 1990 .

[12]  William H. Sandholm,et al.  Population Games And Evolutionary Dynamics , 2010, Economic learning and social evolution.

[13]  Sergiu Hart,et al.  Evolutionary dynamics and backward induction , 2002, Games Econ. Behav..

[14]  H. Young,et al.  The Evolution of Conventions , 1993 .

[15]  Yaw Nyarko Bayesian learning and convergence to Nash equilibria without common priors , 1998 .

[16]  S. Hart,et al.  Uncoupled Dynamics Do Not Lead to Nash Equilibrium , 2003 .

[17]  K. Schlag Why Imitate, and If So, How?, : A Boundedly Rational Approach to Multi-armed Bandits , 1998 .

[18]  David M. Kreps,et al.  Learning Mixed Equilibria , 1993 .

[19]  J. Neumann,et al.  SOLUTIONS OF GAMES BY DIFFERENTIAL EQUATIONS , 1950 .

[20]  Michihiro Kandori,et al.  Evolution of Equilibria in the Long Run: A General Theory and Applications , 1995 .

[21]  Larry Samuelson,et al.  An Evolutionary Analysis of Backward and Forward Induction , 1993 .

[22]  Glenn Ellison,et al.  Basins of Attraction, Long-Run Equilibria, and the Speed of Step-by-Step Evolution , 1995 .

[23]  J. Jordan Bayesian Learning in Repeated Games , 1995 .

[24]  Michael J. Smith,et al.  The Stability of a Dynamic Model of Traffic Assignment - An Application of a Method of Lyapunov , 1984, Transp. Sci..

[25]  L. Shapley SOME TOPICS IN TWO-PERSON GAMES , 1963 .

[26]  Tilman Börgers,et al.  Learning Through Reinforcement and Replicator Dynamics , 1997 .

[27]  H. Peyton Young,et al.  Strategic Learning and Its Limits , 2004 .

[28]  A. Roth,et al.  Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria , 1998 .

[29]  Glenn Ellison Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution , 2000 .

[30]  J. Hofbauer From Nash and Brown to Maynard Smith: Equilibria, Dynamics and ESS , 2001 .

[31]  S. Hart,et al.  A simple adaptive procedure leading to correlated equilibrium , 2000 .

[32]  L. Samuelson,et al.  Musical Chairs: Modeling Noisy Evolution , 1995 .

[33]  E. Kalai,et al.  Rational Learning Leads to Nash Equilibrium , 1993 .

[34]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[35]  R. Vohra,et al.  Calibrated Learning and Correlated Equilibrium , 1996 .

[36]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[37]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .