SN 2019muj – a well-observed Type Iax supernova that bridges the luminosity gap of the class

We present early-time ($t < +50$ days) observations of SN 2019muj (= ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from $\sim$5 days before maximum light ($t_{max}(B)$ on $58707.8$ MJD) and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light curve peaks at 1.05 $\times$ 10$^{42}$ erg s$^{-1}$ and indicates that only 0.031 $M_\odot$ of $^{56}$Ni was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of $M_{V}$ = -16.4 mag. The estimated date of explosion is $t_0 = 58698.2$ MJD and implies a short rise time of $t_{rise}$ = 9.6 days in $B$-band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.

[1]  B. Stalder,et al.  Design and Operation of the ATLAS Transient Science Server , 2020, Publications of the Astronomical Society of the Pacific.

[2]  K. Maguire,et al.  Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha? , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  S. Smartt,et al.  The Lowest of the Low: Discovery of SN 2019gsc and the Nature of Faint Iax Supernovae , 2020, The Astrophysical Journal.

[4]  S. Jha,et al.  Constraining Type Iax supernova progenitor systems with stellar population age dating , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[6]  S. Jha,et al.  Detection of circumstellar helium in Type Iax progenitor systems , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  R. Kotak,et al.  Detecting the signatures of helium in type Iax supernovae , 2018, Astronomy & Astrophysics.

[8]  Jonathan Swift,et al.  The Astronomy Program at the Thacher School , 2018, Robotic Telescopes, Student Research and Education Proceedings, Vol 1, No 1.

[9]  W. E. Kerzendorf,et al.  Type Iax supernovae as a few-parameter family , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  S. Jha,et al.  Nebular Spectroscopy of the “Blue Bump” Type Ia Supernova 2017cbv , 2018, The Astrophysical Journal.

[11]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[12]  A. Levan,et al.  Investigating the diversity of supernovae type Iax: a MUSE and NOT spectroscopic study of their environments , 2017, 1707.04270.

[13]  A. Rest,et al.  Connecting the progenitors, pre-explosion variability and giant outbursts of luminous blue variables with Gaia16cfr , 2017, 1706.09962.

[14]  S. E. Persson,et al.  The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions , 2017, 1709.05146.

[15]  W. E. Kerzendorf,et al.  Abundance tomography of Type Iax SN 2011ay with tardis , 2017, 1707.07848.

[16]  M. Stritzinger,et al.  Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations , 2017, 1707.05350.

[17]  S. Jha Type Iax Supernovae , 2017, 1707.01110.

[18]  P. E. Nugent,et al.  Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx–like Object , 2017, 1703.07449.

[19]  S. Taubenberger The Extremes of Thermonuclear Supernovae , 2017, 1703.00528.

[20]  P. Murdin,et al.  Handbook of Supernovae , 2017 .

[21]  O. Graur,et al.  LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies , 2016, 1609.02923.

[22]  P. Brown,et al.  INTERPRETING FLUX FROM BROADBAND PHOTOMETRY , 2016, 1608.02599.

[23]  Davis,et al.  The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.

[24]  C. McCully,et al.  Optical and near infrared observations of SN 2014ck: an outlier among the Type Iax supernovae , 2016, 1603.07084.

[25]  Santiago,et al.  The type Iax supernova, SN 2015H: A white dwarf deflagration candidate , 2016, 1603.04728.

[26]  E. Bravo,et al.  Explosion of white dwarfs harboring hybrid CONe cores , 2016, 1603.00641.

[27]  A. Riess,et al.  SUPERCAL: CROSS-CALIBRATION OF MULTIPLE PHOTOMETRIC SYSTEMS TO IMPROVE COSMOLOGICAL MEASUREMENTS WITH TYPE Ia SUPERNOVAE , 2015, 1508.05361.

[28]  J. Silverman,et al.  The early phases of the Type Iax supernova SN 2011ay , 2015, 1508.00602.

[29]  T. Morokuma,et al.  OISTER OPTICAL AND NEAR-INFRARED OBSERVATIONS OF TYPE Iax SUPERNOVA 2012Z , 2015, 1505.01593.

[30]  W. Hillebrandt,et al.  Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha , 2015, 1503.04292.

[31]  A. Filippenko,et al.  High-velocity features of calcium and silicon in the spectra of Type Ia supernovae , 2015, 1502.07278.

[32]  E. Ofek,et al.  The rising light curves of Type Ia supernovae , 2014, 1411.1064.

[33]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[34]  J. Truran,et al.  Hybrid C–O–Ne white dwarfs as progenitors of Type Ia supernovae: dependence on Urca process and mixing assumptions , 2014, 1407.0248.

[35]  Peter E. Nugent,et al.  SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS , 2014, 1405.7409.

[36]  M. Phillips,et al.  Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion ∗ , 2014, 1408.1093.

[37]  S. Jha,et al.  POSSIBLE DETECTION OF THE STELLAR DONOR OR REMNANT FOR THE TYPE Iax SUPERNOVA 2008ha , 2014, 1408.1091.

[38]  A. Riess,et al.  A luminous, blue progenitor system for the type Iax supernova 2012Z , 2014, Nature.

[39]  P. Brown,et al.  SOUSA: the Swift Optical/Ultraviolet Supernova Archive , 2014, 1407.3808.

[40]  W. E. Kerzendorf,et al.  A spectral synthesis code for rapid modelling of supernovae , 2014, 1401.5469.

[41]  J. P. Moore,et al.  Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae , 2013, 1311.4525.

[42]  S. Smartt,et al.  The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.

[43]  W. Hillebrandt,et al.  Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for type ia supernovae , 2013, 1308.3257.

[44]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[45]  H. Courtois,et al.  COSMICFLOWS-2: THE DATA , 2013, 1307.7213.

[46]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[47]  Daniel J. Carson,et al.  SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU , 2013, 1302.2926.

[48]  W. Hillebrandt,et al.  3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae , 2012, 1210.5243.

[49]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[50]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[51]  R. Kirshner,et al.  THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es , 2012, 1202.3140.

[52]  A. Filippenko,et al.  Berkeley Supernova Ia Program – II. Initial analysis of spectra obtained near maximum brightness , 2012, 1202.2129.

[53]  E. Chatzopoulos,et al.  GENERALIZED SEMI-ANALYTICAL MODELS OF SUPERNOVA LIGHT CURVES , 2011, 1111.5237.

[54]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[55]  A. Filippenko,et al.  The rise-time distribution of nearby Type Ia supernovae , 2011, 1107.2404.

[56]  S. Smartt,et al.  DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku , 2010, 1008.4353.

[57]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[58]  M. Phillips,et al.  ON THE PROGENITOR AND SUPERNOVA OF THE SN 2002cx-LIKE SUPERNOVA 2008ge, , 2010, 1008.0635.

[59]  D. Berk,et al.  THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET , 2010, 1007.4842.

[60]  J. Frieman,et al.  THE SUBLUMINOUS SUPERNOVA 2007qd: A MISSING LINK IN A FAMILY OF LOW-LUMINOSITY TYPE Ia SUPERNOVAE , 2010, 1007.2850.

[61]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[62]  W. M. Wood-Vasey,et al.  EARLY- AND LATE-TIME OBSERVATIONS OF SN 2008ha: ADDITIONAL CONSTRAINTS FOR THE PROGENITOR AND EXPLOSION , 2009, 0912.0732.

[63]  W. M. Wood-Vasey,et al.  SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.

[64]  D. García-Senz,et al.  PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION , 2009, 0901.3013.

[65]  A. Pastorello,et al.  A low-energy core-collapse supernova without a hydrogen envelope , 2009, Nature.

[66]  E. O. Ofek,et al.  The Broad-lined Type Ic SN 2003jd , 2007, 0710.5173.

[67]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[68]  D. Lamb,et al.  Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae , 2007, astro-ph/0703573.

[69]  S. E. Persson,et al.  The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? , 2006, astro-ph/0611295.

[70]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[71]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[72]  D. Kasen Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.

[73]  D. García-Senz,et al.  Beyond the Bubble Catastrophe of Type Ia Supernovae: Pulsating Reverse Detonation Models , 2006, astro-ph/0604025.

[74]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[75]  J. Prieto,et al.  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[76]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[77]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[78]  Garching,et al.  Abundance stratification in Type Ia supernovae - I. The case of SN 2002bo , 2004, astro-ph/0409342.

[79]  Astrophysics,et al.  Type Ia Supernova Explosion: Gravitationally Confined Detonation , 2004, astro-ph/0405163.

[80]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[81]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[82]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[83]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[84]  Jerry Gunn,et al.  A Robotic Telescope , 2000 .

[85]  A. Riess,et al.  Is there an Indication of Evolution of Type Ia Supernovae from their Rise Times? , 1999, astro-ph/9907038.

[86]  P. Pinto,et al.  The Physics of Type Ia Supernova Light Curves. II. Opacity and Diffusion , 1996, astro-ph/9611195.

[87]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[88]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[89]  J. Wheeler,et al.  Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation , 1995 .

[90]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[91]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[92]  M. Hamuy,et al.  K-CORRECTIONS FOR TYPE IA SUPERNOVAE , 1993 .

[93]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[94]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[95]  V. S. Imshennik,et al.  Pulsation regime of the thermonuclear explosion of a star's dense carbon core , 1974 .