Modélisation spatio-temporelle de la pollution atmosphérique urbaine à partir d'un réseau de surveillance de la qualité de l'air
暂无分享,去创建一个
[1] Jacques Verron,et al. A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .
[2] P. Goovaerts,et al. Study of Spatial and Temporal Variations of Hydrogeochemical Variables Using Factorial Kriging Analysis , 1993 .
[3] W. Dab,et al. Air pollution and doctors' house calls: Results from the ERPURS system for monitoring the effects of air pollution on public health in Greater Paris, France, 1991-1995 , 1997 .
[4] Yves Candau,et al. Air pollutant emissions prediction by process modelling - Application in the iron and steel industry in the case of a re-heating furnace , 2007, Environ. Model. Softw..
[5] F. L. Dimet,et al. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .
[6] C. N. Hewitt,et al. Biogenic emissions in Europe: 1. Estimates and uncertainties , 1995 .
[7] P. Viotti,et al. Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia , 2002 .
[8] Shahrokh Rouhani,et al. Multivariate geostatistical trend detection and network evaluation of space-time acid deposition data—I. Methodology , 1992 .
[9] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[10] Gavin C. Cawley,et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki , 2003 .
[11] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[12] Tomislav Hengl,et al. Comparison of kriging with external drift and regression-kriging. Technical report , 2003 .
[13] P. Kitanidis. Generalized covariance functions in estimation , 1993 .
[14] J. Seinfeld. Atmospheric Chemistry and Physics of Air Pollution , 1986 .
[15] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[16] S. Rouhani,et al. Multivariate geostatistical trend detection and network evaluation of space-time acid deposition data—II. Application to NADP/NTN data , 1992 .
[17] J. Seinfeld,et al. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .
[18] Martin Fodslette Meiller. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1993 .
[19] Stanislav Kolenikov,et al. Spatiotemporal modeling of PM2.5 data with missing values , 2003 .
[20] G. Matheron. Principles of geostatistics , 1963 .
[21] Arjo Segers,et al. Data Assimilation in Atmospheric Chemistry Models Using Kalman Filtering , 2002 .
[22] Jan G. Verwer,et al. Gauss-Seidel Iteration for Stiff ODES from Chemical Kinetics , 1994, SIAM J. Sci. Comput..
[23] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[24] G. Matheron. Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .
[25] Robert Vautard,et al. Validation of a hybrid forecasting system for the ozone concentrations over the Paris area , 2001 .
[26] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[27] C. L. Ajaunie. Geostatistical Approaches to Change of Support Problems – Theoretical Framework – , 2000 .
[28] Gavin C. Cawley,et al. A rigorous inter-comparison of ground-level ozone predictions , 2003 .
[29] Peter K. Kitanidis,et al. PARAMETRIC ESTIMATION OF COVARIANCES OF REGIONALIZED VARIABLES , 1987 .
[30] R. M. Lark,et al. The Matérn variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys , 2007 .
[31] I. Rodríguez‐Iturbe,et al. On the synthesis of random field sampling from the spectrum: An application to the generation of hydrologic spatial processes , 1974 .
[32] Robert Vautard,et al. Sensitivity of photochemical pollution using the adjoint of a simplified chemistry‐transport model , 2000 .
[33] Montserrat Fuentes,et al. Recent advances in space‐time statistics with applications to environmental data: An overview , 2003 .
[34] Anthony Hollingsworth,et al. The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .
[35] Robert N. Miller,et al. Data assimilation into nonlinear stochastic models , 1999 .
[36] Shahrokh Rouhani,et al. Multivariate geostatistical approach to space‐time data analysis , 1990 .
[37] Gavin C. Cawley,et al. Modelling SO2 concentration at a point with statistical approaches , 2004, Environ. Model. Softw..
[38] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[39] S. A. Seguret. Filtering Periodic Noise by Using Trigonometric Kriging , 1989 .
[40] Milan Paluš,et al. Nonlinearity and Prediction of Air Pollution , 2001 .
[41] P. S. Maybeck,et al. Stochastics Models, Estimation, and Control: Introduction , 1979 .
[42] Holger R. Maier,et al. Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..
[43] Gavin C. Cawley,et al. Statistical models to assess the health effects and to forecast ground-level ozone , 2006, Environ. Model. Softw..
[44] G. Matheron. The intrinsic random functions and their applications , 1973, Advances in Applied Probability.
[45] P. Houtekamer,et al. Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .
[46] Phaedon C. Kyriakidis,et al. Geostatistical Space–Time Models: A Review , 1999 .