Soft robust solutions to possibilistic optimization problems

This paper discusses a class of uncertain optimization problems, in which unknown parameters are modeled by fuzzy intervals. The membership functions of the fuzzy intervals are interpreted as possibility distributions for the values of the uncertain parameters. It is shown how the known concepts of robustness and light robustness, for the interval uncertainty representation of the parameters, can be generalized to choose solutions under the assumed model of uncertainty in the possibilistic setting. Furthermore, these solutions can be computed efficiently for a wide class of problems, in particular for linear programming problems with fuzzy parameters in constraints and objective function. In this paper a theoretical framework is presented and results of some computational tests are shown.

[1]  Mir Saman Pishvaee,et al.  Robust possibilistic programming for socially responsible supply chain network design: A new approach , 2012, Fuzzy Sets Syst..

[2]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[3]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[4]  Marc Roubens,et al.  Ranking and defuzzification methods based on area compensation , 1996, Fuzzy Sets Syst..

[5]  Weldon A. Lodwick,et al.  Fuzzy Optimization - Recent Advances and Applications , 2010, Studies in Fuzziness and Soft Computing.

[6]  Stefan Chanas,et al.  On the equivalence of two optimization methods for fuzzy linear programming problems , 2000, Eur. J. Oper. Res..

[7]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[9]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[10]  Jaroslav Ramík,et al.  Duality in fuzzy linear programming with possibility and necessity relations , 2006, Fuzzy Sets Syst..

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  José L. Verdegay,et al.  A Survey on Models and Methods for Solving Fuzzy Linear Programming Problems , 2016, Fuzzy Logic in Its 50th Year.

[13]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[14]  Hidetomo Ichihashi,et al.  Some properties of extended fuzzy preference relations using modalities , 1992, Inf. Sci..

[15]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[16]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[17]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[18]  Iain Dunning,et al.  Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..

[19]  José L. Verdegay,et al.  Using ranking functions in multiobjective fuzzy linear programming , 2000, Fuzzy Sets Syst..

[20]  Masahiro Inuiguchi,et al.  Robust optimization under softness in a fuzzy linear programming problem , 1998, Int. J. Approx. Reason..

[21]  Matteo Fischetti,et al.  Light Robustness , 2009, Robust and Online Large-Scale Optimization.

[22]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[23]  YeYinyu,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010 .

[24]  Rolf H. Möhring,et al.  Robust and Online Large-Scale Optimization: Models and Techniques for Transportation Systems , 2009, Robust and Online Large-Scale Optimization.

[25]  Anita Schöbel,et al.  Generalized light robustness and the trade-off between robustness and nominal quality , 2014, Math. Methods Oper. Res..

[26]  Taehan Lee,et al.  A short note on the robust combinatorial optimization problems with cardinality constrained uncertainty , 2014, 4OR.

[27]  Masahiro Inuiguchi,et al.  Robust-Soft Solutions in Linear Optimization Problems with Fuzzy Parameters , 2016 .

[28]  E. Gobet,et al.  Stochastic Linear Programming , 2022 .

[29]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[30]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[31]  P. Kall STOCHASTIC LINEAR PROGRAMMING Models , Theory , and Computation , 2013 .

[32]  Milan Vlach,et al.  Satisficing solutions and duality in interval and fuzzy linear programming , 2003, Fuzzy Sets Syst..

[33]  J. Ramík,et al.  Generalized Concavity in Fuzzy Optimization and Decision Analysis , 2001 .

[34]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[35]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[36]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[37]  Weldon A. Lodwick,et al.  Fuzzy Optimization , 2009, Encyclopedia of Complexity and Systems Science.

[38]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[39]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[40]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[41]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..