Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes.

[1]  I. Amit,et al.  Impaired immune surveillance accelerates accumulation of senescent cells and aging , 2018, Nature Communications.

[2]  D. Baker,et al.  Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline , 2018, Nature.

[3]  A. Klochendler,et al.  β-Cell DNA Damage Response Promotes Islet Inflammation in Type 1 Diabetes , 2018, Diabetes.

[4]  D. Allison,et al.  Senolytics Improve Physical Function and Increase Lifespan in Old Age , 2018, Nature Medicine.

[5]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[6]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[7]  J. Buckner,et al.  Stacking the Deck: Studies of Patients with Multiple Autoimmune Diseases Propelled Our Understanding of Type 1 Diabetes as an Autoimmune Disease , 2017, The Journal of Immunology.

[8]  S. Quake,et al.  Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns , 2017, Cell.

[9]  S. Melov,et al.  Unmasking Transcriptional Heterogeneity in Senescent Cells , 2017, Current Biology.

[10]  Mark S. Anderson,et al.  Understanding and preventing type 1 diabetes through the unique working model of TrialNet , 2017, Diabetologia.

[11]  N. LeBrasseur,et al.  Targeting cellular senescence prevents age-related bone loss in mice , 2017, Nature Medicine.

[12]  J. Shuga,et al.  Analysis of individual cells identifies cell‐to‐cell variability following induction of cellular senescence , 2017, Aging cell.

[13]  C. Cohrs,et al.  Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis , 2017, Molecular metabolism.

[14]  Shenghui He,et al.  Senescence in Health and Disease , 2017, Cell.

[15]  Å. Lernmark,et al.  Early prediction of autoimmune (type 1) diabetes , 2017, Diabetologia.

[16]  J. Kirkland,et al.  Cellular Senescence: A Translational Perspective , 2017, EBioMedicine.

[17]  Dustin J Maly,et al.  Targeting ABL-IRE1α Signaling Spares ER-Stressed Pancreatic β Cells to Reverse Autoimmune Diabetes. , 2017, Cell metabolism.

[18]  E. Hara,et al.  Impact of senescence‐associated secretory phenotype and its potential as a therapeutic target for senescence‐associated diseases , 2017, Cancer science.

[19]  Wiggert A. van Cappellen,et al.  Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging , 2017, Cell.

[20]  K. Herold,et al.  β Cells that Resist Immunological Attack Develop during Progression of Autoimmune Diabetes in NOD Mice. , 2017, Cell metabolism.

[21]  L. Zender,et al.  The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration , 2017, Genes & development.

[22]  M. Blasco,et al.  Tissue damage and senescence provide critical signals for cellular reprogramming in vivo , 2016, Science.

[23]  F. Rodier,et al.  Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype , 2016, Experimental Gerontology.

[24]  N. Morgan,et al.  Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes , 2016, Diabetologia.

[25]  A. Murphy,et al.  Single-Cell RNAseq Reveals That Pancreatic β-Cells From Very Old Male Mice Have a Young Gene Signature. , 2016, Endocrinology.

[26]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[27]  Masashi Narita,et al.  NOTCH1 mediates a switch between two distinct secretomes during senescence , 2016, Nature Cell Biology.

[28]  K. Herold,et al.  Life and death of β cells in Type 1 diabetes: A comprehensive review. , 2016, Journal of autoimmunity.

[29]  U. Galderisi,et al.  Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses , 2016, Aging.

[30]  Darjus F. Tschaharganeh,et al.  BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. , 2016, Cancer discovery.

[31]  Howard Y. Chang,et al.  Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. , 2016, Cell metabolism.

[32]  L. Dassa,et al.  Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL , 2016, Nature Communications.

[33]  Susan M. Schlenner,et al.  Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes , 2016, Nature Genetics.

[34]  Cory B. Giles,et al.  Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors , 2016, Aging cell.

[35]  A. Klochendler,et al.  p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion , 2016, Nature Medicine.

[36]  A. Pezeshki,et al.  Naturally occurring p16Ink4a-positive cells shorten healthy lifespan , 2016, Nature.

[37]  M. Velarde,et al.  Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. , 2016, Cell metabolism.

[38]  David L. Vaux,et al.  Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies , 2016, Nature Reviews Cancer.

[39]  M. V. von Herrath,et al.  Recent advances in understanding Type 1 Diabetes , 2016, F1000Research.

[40]  N. Sharpless,et al.  Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice , 2015, Nature Medicine.

[41]  D. Baker,et al.  Cellular senescence in aging and age-related disease: from mechanisms to therapy , 2015, Nature Medicine.

[42]  M. Jensen,et al.  JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age , 2015, Proceedings of the National Academy of Sciences.

[43]  L. Le Cam,et al.  Numb is required to prevent p53-dependent senescence following skeletal muscle injury , 2015, Nature Communications.

[44]  Michael B. Stadler,et al.  Aging-Dependent Demethylation of Regulatory Elements Correlates with Chromatin State and Improved β Cell Function. , 2015, Cell metabolism.

[45]  Å. Lernmark,et al.  Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association , 2015, Diabetes Care.

[46]  H. Thomas,et al.  Mouse pancreatic beta cells express MHC class II and stimulate CD4+ T cells to proliferate , 2015, European journal of immunology.

[47]  M. Campbell-Thompson Organ donor specimens: What can they tell us about type 1 diabetes? , 2015, Pediatric diabetes.

[48]  M. Hebrok,et al.  DNA methylation directs functional maturation of pancreatic β cells. , 2015, The Journal of clinical investigation.

[49]  C. Greenbaum,et al.  Changing the Course of Disease in Type 1 Diabetes , 2015 .

[50]  N. Sharpless,et al.  Forging a signature of in vivo senescence , 2015, Nature Reviews Cancer.

[51]  N. LeBrasseur,et al.  The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs , 2015, Aging cell.

[52]  J. Hoeijmakers,et al.  An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. , 2014, Developmental cell.

[53]  Peter E. Czabotar,et al.  Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy , 2013, Nature Reviews Molecular Cell Biology.

[54]  A. Cooke,et al.  Immune mechanisms in type 1 diabetes. , 2013, Trends in immunology.

[55]  J. Sharpe,et al.  Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning , 2013, Cell.

[56]  A. Rodríguez-Baeza,et al.  Programmed Cell Senescence during Mammalian Embryonic Development , 2013, Cell.

[57]  D. Stoffers,et al.  The pancreatic β cell and type 1 diabetes: innocent bystander or active participant? , 2013, Trends in Endocrinology & Metabolism.

[58]  Kelly J. Morris,et al.  A complex secretory program orchestrated by the inflammasome controls paracrine senescence , 2013, Nature Cell Biology.

[59]  A. Cooke,et al.  Type 1 diabetes: translating mechanistic observations into effective clinical outcomes , 2013, Nature Reviews Immunology.

[60]  J. Campisi,et al.  Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. , 2013, The Journal of clinical investigation.

[61]  Å. Lernmark,et al.  Immune therapy in type 1 diabetes mellitus , 2013, Nature Reviews Endocrinology.

[62]  L. Lam,et al.  ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets , 2013, Nature Medicine.

[63]  H. Thomas,et al.  Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. , 2012, The review of diabetic studies : RDS.

[64]  S. Weintraub,et al.  Plasminogen activator inhibitor 1 - insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence , 2012, Proceedings of the National Academy of Sciences.

[65]  S. Lowe,et al.  Granule exocytosis mediates immune surveillance of senescent cells , 2012, Oncogene.

[66]  S. C. Colvin,et al.  Islet β-Cell Endoplasmic Reticulum Stress Precedes the Onset of Type 1 Diabetes in the Nonobese Diabetic Mouse Model , 2012, Diabetes.

[67]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[68]  J. Campisi,et al.  Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype* , 2011, The Journal of Biological Chemistry.

[69]  N. Wierup,et al.  Distribution of melatonin receptors in murine pancreatic islets , 2011, Journal of pineal research.

[70]  D. Accili,et al.  How Does Type 1 Diabetes Develop? , 2011, Diabetes.

[71]  J. Campisi,et al.  p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotype , 2011, The EMBO journal.

[72]  Jeffrey A. Bluestone,et al.  Genetics, pathogenesis and clinical interventions in type 1 diabetes , 2010, Nature.

[73]  K. Chin,et al.  A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen , 2010, PloS one.

[74]  M. V. von Herrath,et al.  Mouse Models for Type 1 Diabetes. , 2009, Drug discovery today. Disease models.

[75]  J. Campisi,et al.  Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion , 2009, Nature Cell Biology.

[76]  A. Bhushan,et al.  Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. , 2009, Genes & development.

[77]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[78]  D. Peeper,et al.  Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network , 2008, Cell.

[79]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[80]  K. Ligon,et al.  p16INK4a induces an age-dependent decline in islet regenerative potential , 2006, Nature.

[81]  J. Lauber,et al.  Pancreatic NOD beta cells express MHC class II protein and the frequency of I-Ag7 mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes , 2003, Diabetologia.

[82]  M. Steffes,et al.  Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. , 2003, Diabetes care.

[83]  E. Leiter,et al.  Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. , 1997, Journal of immunology.

[84]  C. Benoist,et al.  Checkpoints in the progression of autoimmune disease: lessons from diabetes models. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[85]  L. Wen,et al.  The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. , 2016, Journal of autoimmunity.