Old and New Results in the Foundations of Elementary Plane Euclidean and Non-Euclidean Geometries

By “elementary” plane geometry I mean the geometry of lines and circles—straightedge and compass constructions—in both Euclidean and non-Euclidean planes. An axiomatic description of it is in Sections 1.1, 1.2, and 1.6. This survey highlights some foundational history and some interesting recent discoveries that deserve to be better known, such as the hierarchies of axiom systems, Aristotle’s axiom as a “missing link,” Bolyai’s discovery—proved and generalized by William Jagy—of the relationship of “circle-squaring” in a hyperbolic plane to Fermat primes, the undecidability, incompleteness, and consistency of elementary Euclidean geometry, and much more. A main theme is what Hilbert called “the purity of methods of proof,” exemplified in his and his early twentieth century successors’ works on foundations of geometry.

[1]  W. Marsden I and J , 2012 .

[2]  David E. Rowe David Hilbert's Lectures on the Foundations of Geometry, 1891–1902, Michael Hallett, Ulrich Majer (Eds.). Springer-Verlag, Berlin, Heidelberg, New York (2004), xxviii + 661 pp. $99.00, ISBN: 978-3-540-64373-9 , 2007 .

[3]  S. Segal Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .

[4]  G. B. Guccia Rendiconti del circolo matematico di Palermo , 1906 .

[5]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[6]  Michael Beeson,et al.  Constructive Geometry , 2009 .

[7]  J. Strommer,et al.  Über die Kreisaxiome , 1973 .

[8]  Michael Detlefsen Purity as an Ideal of Proof , 2008 .

[9]  Boris Rosenfeld,et al.  The history of non-euclidean geometry , 1988 .

[10]  Edwin E. Moise,et al.  Elementary Geometry from an Advanced Standpoint , 1965 .

[11]  Michael Hallett Reflections on the Purity of Method in Hilbert's Grundlagen der Geometrie , 2008 .

[12]  Bjorn Poonen,et al.  Computing Torsion Points on Curves , 2001, Exp. Math..

[13]  A. Tarski,et al.  Metamathematische Methoden in der Geometrie , 1983 .

[14]  Garrett Birkhoff,et al.  Hilbert's “Grundlagen der Geometrie” , 1987 .

[15]  Paul J. Cohen,et al.  Decision procedures for real and p‐adic fields , 1969 .

[16]  Robin Hartshorne,et al.  Teaching Geometry According to Euclid. , 2000 .

[17]  R. Hartshorne,et al.  Non-Euclidean pythagorean triples, a problem of euler, and rational points on K3 surfaces , 2006, math/0606700.

[18]  Fernando Ferreira,et al.  Groundwork for weak analysis , 2002, Journal of Symbolic Logic.

[19]  F. Loeser,et al.  Motivic integration on smooth rigid varieties and invariants of degenerations , 2001, math/0107134.

[20]  Greenberg Approximation and the Geometry of Arc Spaces , 2009, 0901.1806.

[21]  Alfred Tarski,et al.  Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.

[22]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[23]  Marvin Jay Greenberg Aristotle's axiom in the foundations of geometry , 1988 .

[24]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[25]  W. Pejas,et al.  Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie , 1961 .

[26]  Philip Ehrlich,et al.  FROM COMPLETENESS TO ARCHIMEDEAN COMPLETENES , 2004, Synthese.

[27]  B. A. Rozenfelʹd A history of non-euclidean geometry : evolution of the concept of a geometric space , 1988 .

[28]  Victor Pambuccian,et al.  Axiomatizing geometric constructions , 2008, J. Appl. Log..

[29]  On J. Bolyai's parallel construction , 1979 .

[30]  Günter Ewald,et al.  Geometry: an introduction , 1971 .

[31]  David Hilbert,et al.  The Foundations of Geometry , 1903, The Mathematical Gazette.

[32]  William C. Jagy Squaring circles in the hyperbolic plane , 1995 .

[33]  R. Hartshorne Geometry: Euclid and Beyond , 2005 .

[34]  Jeremy Gray Janos Bolyai, Non-Euclidean Geometry, and the Nature of Space , 2004 .

[35]  B. Dragovich Non-Archimedean Geometry and Physics on Adelic Spaces , 2003, math-ph/0306023.

[36]  J. Gray Plato's Ghost: The Modernist Transformation of Mathematics , 2008 .

[37]  ca. Proclus,et al.  A commentary on the first book of Euclid's Elements , 1970 .