A gap in the planetesimal disc around HD 107146 and asymmetric warm dust emission revealed by ALMA

While detecting low-mass exoplanets at tens of au is beyond current instrumentation, debris discs provide a unique opportunity to study the outer regions of planetary systems. Here, we report new ALMA observations of the 80-200 Myr old Solar analogue HD 107146 that reveal the radial structure of its exo-Kuiper belt at wavelengths of 1.1 and 0.86 mm. We find that the planetesimal disc is broad, extending from 40 to 140 au, and it is characterized by a circular gap extending from 60 to 100 au in which the continuum emission drops by about 50 per cent. We also report the non-detection of the CO J = 3-2 emission line, confirming that there is not enough gas to affect the dust distribution. To date, HD 107146 is the only gas-poor system showing multiple rings in the distribution of millimetre sized particles. These rings suggest a similar distribution of the planetesimals producing small dust grains that could be explained invoking the presence of one or more perturbing planets. Because the disc appears axisymmetric, such planets should be on circular orbits. By comparing N-body simulations with the observed visibilities we find that to explain the radial extent and depth of the gap, it would require the presence of multiple low-mass planets or a single planet that migrated through the disc. Interior to HD 107146's exo-Kuiper belt we find extended emission with a peak at ˜20 au and consistent with the inner warm belt that was previously predicted based on 22 μm excess as in many other systems. This warm belt is the first to be imaged, although unexpectedly suggesting that it is asymmetric. This could be due to a large belt eccentricity or due to clumpy structure produced by resonant trapping with an additional inner planet.

[1]  G. Kennedy,et al.  Empty gaps? Depleting annular regions in debris discs by secular resonance with a two-planet system , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  D. Wilner,et al.  An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation , 2018, 1804.01094.

[3]  B. Matthews,et al.  Debris Disks: Structure, Composition, and Variability , 2018, Annual Review of Astronomy and Astrophysics.

[4]  D. Wilner,et al.  Molecular Reconnaissance of the β Pictoris Gas Disk with the SMA: A Low HCN/(CO+CO2) Outgassing Ratio and Predictions for Future Surveys , 2018, 1801.03945.

[5]  A. Johansen,et al.  Debris disc constraints on planetesimal formation , 2017, 1711.03490.

[6]  Steve Ertel,et al.  ALMA 1.3 mm Map of the HD 95086 System , 2017, 1709.10129.

[7]  T. Henning,et al.  Molecular Gas in Debris Disks around Young A-type Stars , 2017, 1709.08414.

[8]  M. Kuchner,et al.  The Interplay between Radiation Pressure and the Photoelectric Instability in Optically Thin Disks of Gas and Dust , 2017, 1709.07982.

[9]  D. Lin,et al.  Clearing residual planetesimals by sweeping secular resonances in transitional disks: a lone-planet scenario for the wide gaps in debris disks around Vega and Fomalhaut , 2017, 1709.07382.

[10]  A. Johansen,et al.  Forming Planets via Pebble Accretion , 2017 .

[11]  J. Graham,et al.  Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets , 2017, 1705.05868.

[12]  G. Rieke,et al.  A Complete ALMA Map of the Fomalhaut Debris Disk , 2017, 1705.05867.

[13]  W. Holland,et al.  ALMA observations of the multiplanet system 61 Vir: what lies outside super-Earth systems? , 2017, 1705.01944.

[14]  M. Wyatt,et al.  Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals , 2017, 1703.10693.

[15]  A. Krivov,et al.  Does warm debris dust stem from asteroid belts , 2017, 1702.05966.

[16]  J. Sutherland Opinion: Studies on the origin of life — the end of the beginning , 2017 .

[17]  B. Matthews,et al.  ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M ⊕ planets? , 2016, 1611.01168.

[18]  J. Augereau,et al.  Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations , 2016, 1609.06718.

[19]  A. Boccaletti,et al.  SPHERE/SHINE reveals concentric rings in the debris disk of HIP 73145 , 2016, 1612.07621.

[20]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[21]  E. Nesvold,et al.  APOCENTER GLOW IN ECCENTRIC DEBRIS DISKS: IMPLICATIONS FOR FOMALHAUT AND ϵ ERIDANI , 2016, 1607.06798.

[22]  E. Matthews,et al.  The unseen planets of double belt debris disc systems , 2016, 1607.04282.

[23]  K. Flaherty,et al.  DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION RESOLVED BY ALMA , 2016, 1606.07068.

[24]  S. Wolf,et al.  Origin and evolution of two-component debris discs and an application to the q1 Eridani system , 2016, 1606.05187.

[25]  W. C. Danchi,et al.  Incidence of debris discs around FGK stars in the solar neighbourhood , 2016, 1605.05837.

[26]  A. Roberge,et al.  Exocometary gas in the HD 181327 debris ring , 2016, 1605.05331.

[27]  R. Brahm,et al.  Resolving the planetesimal belt of HR 8799 with ALMA , 2016, 1603.04853.

[28]  E. Thilliez,et al.  Numerical predictions for planets in the debris discs of HD 202628 and HD 207129 , 2016, 1601.02272.

[29]  P. Armitage,et al.  THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY , 2015, 1512.00009.

[30]  L. Testi,et al.  AN ATCA SURVEY OF DEBRIS DISKS AT 7 MILLIMETERS , 2015, 1510.03513.

[31]  T. Henning,et al.  DISCOVERY OF MOLECULAR GAS AROUND HD 131835 IN AN APEX MOLECULAR LINE SURVEY OF BRIGHT DEBRIS DISKS , 2015, 1510.03766.

[32]  A. Johansen,et al.  The growth of planets by pebble accretion in evolving protoplanetary discs , 2015 .

[33]  S. Andrews Observations of Solids in Protoplanetary Disks , 2015, 1507.04758.

[34]  M. Wyatt,et al.  Double-ringed debris discs could be the work of eccentric planets: explaining the strange morphology of HD 107146 , 2015, 1507.04367.

[35]  Claudia Percivalle,et al.  Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. , 2015, Nature Chemistry.

[36]  A. Johansen,et al.  Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion , 2015, Science Advances.

[37]  A. Fontana,et al.  ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background , 2015, 1502.00640.

[38]  W. Dent,et al.  CO mass upper limits in the Fomalhaut ring - the importance of NLTE excitation in debris discs and future prospects with ALMA , 2014, 1412.2757.

[39]  Edinburgh,et al.  THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE REST-FRAME FAR-INFRARED EMISSION OF SUB-MILLIMETER GALAXIES , 2014, The Astrophysical Journal.

[40]  N. Phillips,et al.  An unbiased study of debris discs around A-type stars with Herschel , 2014 .

[41]  J. Carpenter,et al.  ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146 , 2014, 1410.8265.

[42]  H. Beust,et al.  Insights on the dynamical history of the Fomalhaut system - Investigating the Fom c hypothesis , 2014, 1409.6868.

[43]  M. Wyatt,et al.  Do two-temperature debris discs have multiple belts? , 2014, 1408.4116.

[44]  G. Rieke,et al.  PROBING THE TERRESTRIAL REGIONS OF PLANETARY SYSTEMS: WARM DEBRIS DISKS WITH EMISSION FEATURES , 2014, 1407.7547.

[45]  J. Wisniewski,et al.  PROBING FOR EXOPLANETS HIDING IN DUSTY DEBRIS DISKS: DISK IMAGING, CHARACTERIZATION, AND EXPLORATION WITH HST/STIS MULTI-ROLL CORONAGRAPHY , 2014, 1406.7303.

[46]  M. Wyatt,et al.  Dynamical evolution of an eccentric planet and a less massive debris disc , 2014, 1406.7294.

[47]  A. Lagrange,et al.  Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk , 2014, Science.

[48]  M. Wyatt,et al.  Debris froms giant impacts between planetary embryos at large orbital radii , 2014, 1403.1888.

[49]  Santiago,et al.  RESOLVED IMAGING OF THE HR 8799 DEBRIS DISK WITH HERSCHEL , 2013, 1311.2977.

[50]  E. Nesvold,et al.  SMACK: A NEW ALGORITHM FOR MODELING COLLISIONS AND DYNAMICS OF PLANETESIMALS IN DEBRIS DISKS , 2013, 1309.2289.

[51]  S. Charnoz,et al.  LIDT-DD: A new self-consistent debris disc model that includes radiation pressure and couples dynamical and collisional evolution , 2013, 1308.6502.

[52]  M. Kuchner,et al.  Formation of sharp eccentric rings in debris disks with gas but without planets , 2013, Nature.

[53]  C. Hanot,et al.  A near-infrared interferometric survey of debris-disc stars - III. First statistics based on 42 stars observed with CHARA/FLUOR , 2013, 1307.2488.

[54]  Julien H. Girard,et al.  DISCOVERY OF A PROBABLE 4–5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING , 2013, 1305.7428.

[55]  Mark Clampin,et al.  STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b , 2013, 1305.2222.

[56]  I. Ribas,et al.  DUst around NEarby Stars. The survey observational results , 2013, 1305.0155.

[57]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[58]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[59]  A. Morbidelli,et al.  Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations , 2012, 1208.4687.

[60]  C. Ormel,et al.  MIGRATION RATES OF PLANETS DUE TO SCATTERING OF PLANETESIMALS , 2012, 1207.7104.

[61]  J. Krist,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE HD 202628 DEBRIS DISK , 2012, 1206.2078.

[62]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[63]  M. Barlow,et al.  UvA-DARE ( Digital Academic Repository ) Herschel images of Fomalhaut : an extrasolar Kuiper belt at the height of its dynamical activity , 2012 .

[64]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[65]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[66]  S. Wolf,et al.  Multi-wavelength modeling of the spatially resolved debris disk of HD 107146 , 2011, 1107.1057.

[67]  G. D. Illingworth,et al.  HUBBLE AND SPITZER SPACE TELESCOPE OBSERVATIONS OF THE DEBRIS DISK AROUND THE NEARBY K DWARF HD 92945 , 2011, 1105.0888.

[68]  K. Stapelfeldt,et al.  COMMON WARM DUST TEMPERATURES AROUND MAIN-SEQUENCE STARS , 2011 .

[69]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[70]  C. Ormel,et al.  The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks , 2010, 1007.0916.

[71]  M. Wyatt,et al.  Are debris discs self-stirred? , 2010, 1002.3469.

[72]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[73]  S. Kenyon,et al.  VARIATIONS ON DEBRIS DISKS. II. ICY PLANET FORMATION AS A FUNCTION OF THE BULK PROPERTIES AND INITIAL SIZES OF PLANETESIMALS , 2009, 0911.4129.

[74]  H. F. Levison,et al.  MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES , 2009, 0912.3144.

[75]  A. Johansen,et al.  Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment , 2009, 0910.1524.

[76]  A. Crida,et al.  LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b , 2009, 0910.1004.

[77]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[78]  Peter Plavchan,et al.  SPITZER MID-IR SPECTRA OF DUST DEBRIS AROUND A AND LATE B TYPE STARS: ASTEROID BELT ANALOGS AND POWER-LAW DUST DISTRIBUTIONS , 2009 .

[79]  Dan M. Watson,et al.  SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS , 2009, 0906.3744.

[80]  Jack J. Lissauer,et al.  Orbital stability of systems of closely-spaced planets , 2009 .

[81]  Aaron C. Boley,et al.  THE TWO MODES OF GAS GIANT PLANET FORMATION , 2009, 0902.3999.

[82]  P. Kalas,et al.  FOMALHAUT'S DEBRIS DISK AND PLANET: CONSTRAINING THE MASS OF FOMALHAUT B FROM DISK MORPHOLOGY , 2008, 0811.1985.

[83]  S. Wolf,et al.  FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROPERTIES OF DEBRIS DUST AROUND SOLAR-TYPE STARS , 2008, 0810.1003.

[84]  Harold F. Levison,et al.  Simulations of planet migration driven by planetesimal scattering , 2009 .

[85]  T. Fusco,et al.  A probable giant planet imaged in the beta Pictoris disk. VLT/NaCo deep L'-band imaging , 2008, 0811.3583.

[86]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[87]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[88]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[89]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[90]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[91]  A. Moro-martin,et al.  The Complete Census of 70 μm-Bright Debris Disks within “The Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like Stars , 2007, 0801.0163.

[92]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[93]  E. Ford,et al.  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[94]  Resonant Structures in Planetesimal Disks due to Planetary Migration , 2007, 0801.2691.

[95]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[96]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[97]  G. Besla,et al.  Formation of Narrow Dust Rings in Circumstellar Debris Disks , 2006, astro-ph/0609248.

[98]  G. Rieke,et al.  Debris Disk Evolution around A Stars , 2006, astro-ph/0608563.

[99]  Alice C. Quillen,et al.  Predictions for a planet just inside Fomalhaut's eccentric ring , 2006, astro-ph/0605372.

[100]  M. Wyatt Dust in Resonant Extrasolar Kuiper Belts: Grain Size and Wavelength Dependence of Disk Structure , 2005, astro-ph/0511219.

[101]  R. Malhotra,et al.  Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations , 2005, astro-ph/0507319.

[102]  M. Wyatt Spiral structure when setting up pericentre glow : possible giant planets at hundreds of AU in the HD 141569 disk , 2005, astro-ph/0506208.

[103]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[104]  Heidelberg,et al.  Dust Distribution in Gas Disks. II. Self-induced Ring Formation through a Clumping Instability , 2005, astro-ph/0502536.

[105]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[106]  H. Ford,et al.  A Resolved Debris Disk around the G2 V Star HD 107146 , 2004, astro-ph/0411422.

[107]  Harold F. Levison,et al.  Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? , 2004 .

[108]  Michael C. Liu,et al.  Detection of Cool Dust around the G2 V Star HD 107146 , 2003, astro-ph/0311583.

[109]  R. Rafikov Fast Accretion of Small Planetesimals by Protoplanetary Cores , 2003, astro-ph/0311440.

[110]  M. Wyatt,et al.  Resonant Trapping of Planetesimals by Planet Migration: Debris Disk Clumps and Vega’s Similarity to the Solar System , 2003, astro-ph/0308253.

[111]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[112]  S. Kenyon,et al.  Dusty Rings: Signposts of Recent Planet Formation , 2002, astro-ph/0208155.

[113]  W. Dent,et al.  Collisional processes in extrasolar planetesimal discs – dust clumps in Fomalhaut's debris disc , 2002, astro-ph/0204034.

[114]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[115]  D. Lin,et al.  Orbital Migration of Neptune and Orbital Distribution of Trans-Neptunian Objects , 2000 .

[116]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[117]  S. Dermott,et al.  How Observations of Circumstellar Disk Asymmetries Can Reveal Hidden Planets: Pericenter Glow and Its Application to the HR 4796 Disk , 1999, astro-ph/9908267.

[118]  R. Malhotra,et al.  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[119]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[120]  John E. Chambers,et al.  The Stability of Multi-Planet Systems , 1996 .

[121]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[122]  Martin J. Duncan,et al.  The long-term evolution of orbits in the solar system: A mapping approach , 1989 .

[123]  日本物理学会,et al.  Progress of theoretical physics. Supplement , 1985 .

[124]  Julio A. Fernández,et al.  Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals , 1984 .

[125]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[126]  Jack Wisdom,et al.  The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem , 1980 .

[127]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[128]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .