Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma

[1]  Fergus Gleeson,et al.  Integrated Pharmacodynamic Analysis Identifies Two Metabolic Adaption Pathways to Metformin in Breast Cancer , 2018, Cell metabolism.

[2]  C. Baines,et al.  The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. , 2018, Cell calcium.

[3]  M. Protopopova,et al.  An inhibitor of oxidative phosphorylation exploits cancer vulnerability , 2018, Nature Medicine.

[4]  P. A. Futreal,et al.  Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer , 2018, Nature Medicine.

[5]  Darryl J. Pappin,et al.  Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells , 2018, Cell reports.

[6]  M. Selak,et al.  Resistance Is Futile: Targeting Mitochondrial Energetics and Metabolism to Overcome Drug Resistance in Cancer Treatment. , 2017, Cell metabolism.

[7]  Robert W. Williams,et al.  Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals , 2017, The Journal of cell biology.

[8]  R. Wechsler-Reya,et al.  Brain Tumor Stem Cells Remain in Play. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  J. Faraldo-Gómez,et al.  Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore , 2017, eLife.

[10]  Matthew G. Vander Heiden,et al.  Understanding the Intersections between Metabolism and Cancer Biology , 2017, Cell.

[11]  E. Lengyel,et al.  Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers. , 2016, Cell metabolism.

[12]  M. Zoratti,et al.  The mitochondrial permeability transition pore in AD 2016: An update. , 2016, Biochimica et biophysica acta.

[13]  R. Chhipa,et al.  Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. , 2016, Trends in pharmacological sciences.

[14]  Michael D. Forrest Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy , 2015, bioRxiv.

[15]  Gary D Bader,et al.  Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. , 2015, Cancer cell.

[16]  L. Galluzzi,et al.  Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition , 2015, Oncogene.

[17]  Thomas A. Zangle,et al.  Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development , 2014, Cell Death and Disease.

[18]  John M. Asara,et al.  Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function , 2014, Nature.

[19]  P. Pinton,et al.  The Mitochondrial Permeability Transition Pore and Cancer: Molecular Mechanisms Involved in Cell Death , 2014, Front. Oncol..

[20]  S. Sollott,et al.  Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. , 2014, Physiological reviews.

[21]  Andrea Glasauer,et al.  Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis , 2014, eLife.

[22]  L. Galluzzi,et al.  Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition , 2014, Oncogene.

[23]  K. O'Byrne,et al.  Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising , 2014, Front. Oncol..

[24]  C. Creighton,et al.  CXCR4/CXCL12 Mediate Autocrine Cell- Cycle Progression in NF1-Associated Malignant Peripheral Nerve Sheath Tumors , 2013, Cell.

[25]  Michael R. Green,et al.  Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. , 2012, Cancer cell.

[26]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth following chemotherapy , 2012, Nature.

[27]  L. Galluzzi,et al.  Molecular mechanisms of cisplatin resistance , 2012, Oncogene.

[28]  M. Meijler,et al.  Diazirine based photoaffinity labeling. , 2012, Bioorganic & medicinal chemistry.

[29]  S. Perry,et al.  Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. , 2011, BioTechniques.

[30]  Yan Luo,et al.  Thioredoxin-interacting Protein (Txnip) Gene Expression , 2010, The Journal of Biological Chemistry.

[31]  Jiangbin Ye,et al.  The GCN2‐ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation , 2010, The EMBO journal.

[32]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[33]  P. Donnan,et al.  New Users of Metformin Are at Low Risk of Incident Cancer , 2009, Diabetes Care.

[34]  A. Harris,et al.  The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. , 2009, Cancer research.

[35]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[36]  R. Mason,et al.  Pten haploinsufficiency accelerates formation of high-grade astrocytomas. , 2008, Cancer research.

[37]  Allan Vaag,et al.  TXNIP Regulates Peripheral Glucose Metabolism in Humans , 2007, PLoS medicine.

[38]  S. Grimm,et al.  The permeability transition pore complex in cancer cell death , 2006, Oncogene.

[39]  L. Augenlicht,et al.  Growth properties of colonic tumor cells are a function of the intrinsic mitochondrial membrane potential. , 2006, Cancer research.

[40]  L. Augenlicht,et al.  The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. , 2005, Cancer research.

[41]  Dawen Zhao,et al.  Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. , 2005, Cancer cell.

[42]  Kathryn A. O’Donnell,et al.  Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis , 2005, Molecular and Cellular Biology.

[43]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[44]  Dario R Alessi,et al.  Metformin and reduced risk of cancer in diabetic patients , 2005, BMJ : British Medical Journal.

[45]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[46]  J. Modica-Napolitano,et al.  Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. , 2001, Advanced drug delivery reviews.

[47]  I. Summerhayes,et al.  Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. , 1982, Science.

[48]  G. Draetta,et al.  Metabolic Features of Cancer Treatment Resistance. , 2016, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[49]  S. Weinberg,et al.  Targeting mitochondria metabolism for cancer therapy. , 2015, Nature chemical biology.

[50]  V. Anisimov,et al.  Effect of treatment with phenformin, diphenylhydantoin or L-dopa on life span and tumour incidence in C3H/Sn mice. , 1980, Gerontology.