Long-distance quantum communication with neutral atoms

A method and device for processing quasi-periodic signals from machines that provides improved diagnostic results. A dynamic, non-uniform signal termed the speed clock controls processing of the signals. This processing prevents the leakage artifacts and poor frequency resolution that can mask signal components and limit the diagnostic value of existing technology. Valuable phase information, which is destroyed by existing sampling methods controlled directly by encoder signals, is retained. The invention also enables removal of large masking signal components without otherwise altering the signal. By preventing artifacts, retaining phase information, and removing undesirable signal components, the present invention is a dramatic improvement over existing technology for processing signals to determine the health and performance of operating machines.

[1]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[2]  P Grangier,et al.  Controlled Single-Photon Emission from a Single Trapped Two-Level Atom , 2005, Science.

[3]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[4]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[5]  F. Wong,et al.  Efficient and spectrally bright source of polarization-entangled photons , 2004, quant-ph/0409162.

[6]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[7]  D. Matsukevich,et al.  Quantum telecommunication based on atomic cascade transitions. , 2006, Physical Review Letters.

[8]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[9]  Shanhui Fan,et al.  All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. , 2003, Optics letters.

[10]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[11]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[12]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[13]  Marco Fiorentino,et al.  Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. , 2004, Physical review letters.

[14]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[15]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[16]  Quantum phase gate operation based on nonlinear optics: Full quantum analysis , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[17]  Kimble,et al.  Quantum-state mapping between multilevel atoms and cavity light fields. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  Harald Weinfurter,et al.  Embedded Bell-state analysis , 1998 .

[19]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[20]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[21]  Tad Hogg,et al.  A Quantum Treatment of Public Goods Economics , 2002, Quantum Inf. Process..

[22]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  J. H. Shapiro,et al.  Long-distance quantum communication with neutral atoms (14 pages) , 2006 .

[24]  F. Wong,et al.  Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones. , 2005, Optics express.

[25]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[26]  P. Zoller,et al.  Three-dimensional theory for interaction between atomic ensembles and free-space light , 2002 .

[27]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[28]  M. Shahriar,et al.  Long distance, unconditional teleportation of atomic states via complete Bell state measurements. , 2000, Physical review letters.

[29]  R. Feynman Simulating physics with computers , 1999 .

[30]  H A Haus,et al.  Analytical solution to the quantum field theory of self-phase modulation with a finite response time. , 1994, Physical review letters.

[31]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[32]  H. S. Allen The Quantum Theory , 1928, Nature.

[33]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[34]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[35]  S. M. Dutra,et al.  Cavity quantum electrodynamics : the strange theory of light in a box , 2004 .

[36]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[37]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[38]  Error models for long-distance qubit teleportation , 2003 .

[39]  M. Shahriar,et al.  Light-shift imbalance induced blockade of collective excitations beyond the lowest order , 2006, quant-ph/0604120.

[40]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[41]  W. Louisell,et al.  Radiation and noise in quantum electronics , 1964 .

[42]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[43]  D. Matsukevich,et al.  Entanglement of remote atomic qubits. , 2006, Physical review letters.

[44]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[45]  H. Kimble,et al.  Control of decoherence in the generation of photon pairs from atomic ensembles , 2005, quant-ph/0507127.

[46]  Edo Waks,et al.  Ultra-bright source of polarization-entangled photons , 1999 .

[47]  J. Mostowski,et al.  Transverse effects in stimulated Raman scattering , 1984 .

[48]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[49]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[50]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[51]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[52]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[53]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[54]  J. Shapiro,et al.  An ultrabright narrowband source of polarization-entangled photon pairs , 2000, QELS 2000.

[55]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[56]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[57]  Quantum communication and computing with atomic ensembles using a light-shift-imbalance-induced blockade , 2006, quant-ph/0604121.

[58]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[59]  Ofer Shapira,et al.  Hollow multilayer photonic bandgap fibers for NIR applications. , 2004, Optics express.

[60]  Hot-cavity loading: A Heisenberg-Langevin analysis , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[61]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[62]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[63]  Vittorio Giovannetti,et al.  Generating entangled two-photon states with coincident frequencies. , 2002, Physical review letters.

[64]  Bergmann,et al.  Adiabatic population transfer in a three-level system driven by delayed laser pulses. , 1989, Physical review. A, General physics.

[65]  R. G. Beausoleil,et al.  Applications of electromagnetically induced transparency to quantum information processing , 2004, quant-ph/0403028.

[66]  J. Marangos Electromagnetically induced transparency , 1998 .

[67]  D. Dieks Communication by EPR devices , 1982 .

[68]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[69]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[70]  A. A. Zhukov,et al.  Practical realization of a quantum cryptography protocol exploiting polarization encoding in qutrits , 2003 .

[71]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[72]  Jeffrey H. Shapiro,et al.  Architectures for long-distance quantum teleportation , 2002 .