Silicon device processing in H-ambients: H-diffusion mechanisms and influence on electronic properties

Hydrogen is an electronically active impurity in Si with some unique properties—it can passivate other impurities and defects, both-at the interface and in the bulk. Controlled introduction of H can lower interface state density, and thereby improve Schottky and MOS devices, and can reduce bulk recombination to increase minority-carrier-controlled device performance. However, excess H can also in troduce defects that can be detrimental to the device properties. Although H is typically introduced by exposing the device to a fluc of atomic species, a suitable device configuration can be passivated by thermal treatment in forming gas. This paper addresses some basic issues of deviee processing in H ambient to improve device performance.

[1]  W. B. Jackson,et al.  Comment on ‘‘Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing’’ [Appl. Phys. Lett. 68, 2526 (1996)] , 1996 .

[2]  S. Pearton,et al.  Hydrogen on Semiconductor Surfaces , 1986 .

[3]  E. Sveinbjörnsson,et al.  Similarities in the electrical properties of transition metal-hydrogen complexes in silicon , 1999 .

[4]  Van de Walle CG,et al.  Hydrogen interactions with self-interstitials in silicon. , 1995, Physical review. B, Condensed matter.

[5]  J. Pankove,et al.  Hydrogen in semiconductors , 1991 .

[6]  Si‐Chen Lee,et al.  A possible mechanism for improved light-induced degradation in deuterated amorphous-silicon alloy , 1997 .

[7]  E. Katz,et al.  Polycrystalline Silicon Solar Cells: Improvements in Efficiency through Hydrogen Passivation , 1996 .

[8]  S. Pearton,et al.  The electrical properties of deep copper‐ and nickel‐related centers in silicon , 1983 .

[9]  K. Hess,et al.  Application of high pressure deuterium annealing for improving the hot carrier reliability of CMOS transistors , 2000, IEEE Electron Device Letters.

[10]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[11]  A. V. Wieringen,et al.  On the permeation of hydrogen and helium in single crystal silicon and germanium at elevated temperatures , 1956 .

[12]  D. L. Staebler,et al.  Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon , 1980 .

[13]  J. Autran,et al.  Interfacial hardness enhancement in deuterium annealed 0.25 μm channel metal oxide semiconductor transistors , 1997 .

[14]  J. Sun,et al.  Deactivation of the boron acceptor in silicon by hydrogen , 1983 .

[15]  S. Pearton,et al.  Hydrogen passivation of gold-related deep levels in silicon , 1982 .

[16]  T. Ichimiya,et al.  On the solubility and diffusion coefficient of tritium in single crystals of silicon , 1968 .

[17]  V. Markevich,et al.  Hydrogen-oxygen interaction in silicon at around 50 °C , 1998 .

[18]  K. Hess,et al.  Deuterium post-metal annealing of MOSFET's for improved hot carrier reliability , 1997, IEEE Electron Device Letters.

[19]  David S. Ginley,et al.  Passivation of grain boundaries in polycrystalline silicon , 1979 .

[20]  B. Sopori,et al.  Observation of enhanced hydrogen diffusion in solar cell silicon , 1992 .

[21]  David L. Griscom,et al.  Hydrogen model for radiation-induced interface states in SiO2-on-Si Structures: A review of the evidence , 1992 .

[22]  Jacques I. Pankove,et al.  Hydrogenation and dehydrogenation of amorphous and crystalline silicon , 1978 .

[23]  Johnson,et al.  Interstitial hydrogen and neutralization of shallow-donor impurities in single-crystal silicon. , 1986, Physical review letters.

[24]  Teh Y. Tan,et al.  Seventh Workshop on The Role of Impurities and Defects in Silicon Device Processing , 1996 .

[25]  K. Hess,et al.  Improvement of hot carrier reliability with deuterium anneals for manufacturing multilevel metal/dielectric MOS systems , 1998, IEEE Electron Device Letters.

[26]  A. Matsuda,et al.  Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical separation technique , 1986 .

[27]  Warren B. Jackson,et al.  Hydrogen passivation of grain boundary defects in polycrystalline silicon thin films , 1993 .

[28]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[29]  B. M. Abdurakhmanov,et al.  Hydrogen passivation of defects in polycrystalline silicon solar cells , 1995 .

[30]  S. Öberg,et al.  Identification of the hydrogen-saturated self-interstitials in silicon and germanium , 1998 .

[31]  M. Capizzi,et al.  Hydrogen in crystalline silicon: A deep donor? , 1987 .

[32]  J. Weber Electrical Properties of Transition Metal Hydrogen Complexes in Silicon , 1998 .

[33]  R. Pritchard,et al.  Interactions of hydrogen molecules with bond-centered interstitial oxygen and another defect center in silicon , 1997 .

[34]  N. Johnson,et al.  Absence of oxygen diffusion during hydrogen passivation of shallow‐acceptor impurities in single‐crystal silicon , 1985 .

[35]  D. Biegelsen,et al.  Low‐temperature annealing and hydrogenation of defects at the Si–SiO2 interface , 1981 .

[36]  K. Hess,et al.  Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing , 1996 .

[37]  K. L. Brower Kinetics of H/sub 2/ passivation of P/sub b/ centers at the (111) Si-SiO/sub 2/ interface , 1988 .

[38]  Chih-Tang Sah,et al.  Study of the atomic models of three donorlike defects in silicon metal‐oxide‐semiconductor structures from their gate material and process dependencies , 1984 .

[39]  M. Brodsky,et al.  Electron Spin Resonance in Amorphous Silicon, Germanium, and Silicon Carbide , 1969 .

[40]  A. Safonov,et al.  Identification of the hexavacancy in silicon with the B_4^80 optical center , 2000 .

[41]  A. Mogro-Campero,et al.  Drastic Changes in the Electrical Resistance of Gold‐Doped Silicon Produced by a Hydrogen Plasma , 1985 .

[42]  C. Svensson,et al.  A hydrogen-sensitive Pd-gate MOS transistor , 1975 .

[43]  J. Joannopoulos,et al.  Mechanism for hydrogen-enhanced oxygen diffusion in silicon , 1999 .

[44]  R. Wallace,et al.  Hydrogen/deuterium interaction with CMOS transistor device structure: Sintering process studied by SIMS , 1998 .

[45]  T. King,et al.  High dose-rate hydrogen passivation of polycrystalline silicon CMOS TFTs by plasma ion implantation , 1996 .

[46]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[47]  Brower Kl,et al.  Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface. , 1988 .

[48]  F. B. McLean A Framework for Understanding Radiation-Induced Interface States in SiO2 MOS Structures , 1980, IEEE Transactions on Nuclear Science.

[49]  A. Brown,et al.  Hydrogen diffusion and the catalysis of enhanced oxygen diffusion in silicon at temperatures below 500 °C , 1991 .

[50]  S. Pearton,et al.  Electrical properties of deep silver- and iron-related centres in silicon , 1984 .

[51]  Endros Charge-state-dependent hydrogen-carbon-related deep donor in crystalline silicon. , 1989, Physical review letters.

[52]  B. Sopori,et al.  Hydrogen in silicon: a discussion of diffusion and passivation mechanisms. , 1996 .

[53]  S. Guha,et al.  Improved stability against light exposure in amorphous deuterated silicon alloy solar cell , 1997 .

[54]  J. Pankove,et al.  Amorphous silicon as a passivant for crystalline silicon , 1979 .

[55]  E. Haller,et al.  Bulk acceptor compensation produced in p‐type silicon at near‐ambient temperatures by a H2O plasma , 1984 .

[56]  C. H. Seager,et al.  Real‐time observations of hydrogen drift and diffusion in silicon , 1988 .

[57]  S. K. Wong,et al.  A study of hydrogen diffusion in crystalline silicon by secondary-ion mass spectrometry , 1989 .

[58]  A. Rohatgi,et al.  Interaction of low‐energy implanted atomic H with slow and fast diffusing metallic impurities in Si , 1986 .