Counting zeros of Dirichlet L-functions
暂无分享,去创建一个
Kevin O'Bryant | Michael A. Bennett | Greg Martin | Andrew Rechnitzer | G. Martin | K. O'Bryant | M. Bennett | A. Rechnitzer
[1] Timothy S. Trudgian,et al. An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions , 2012, Math. Comput..
[2] David J. Platt,et al. Numerical computations concerning the GRH , 2013, Math. Comput..
[3] Gholamreza Alirezaei. A Sharp Double Inequality for the Inverse Tangent Function , 2013, ArXiv.
[4] G. Martin,et al. Explicit bounds for primes in arithmetic progressions , 2018, 1802.00085.
[5] Kevin S. McCurley,et al. Explicit estimates for the error term in the prime number theorem for arithmetic progressions , 1984 .
[6] Hans Rademacher,et al. On the Phragmén-Lindelöf theorem and some applications , 1959 .
[7] F. Topsøe. Some Bounds for the Logarithmic Function , 2004 .
[8] D. E. G. Hare,et al. Computing the Principal Branch of log-Gamma , 1997, J. Algorithms.
[9] Tim Trudgian,et al. An improved upper bound for the argument of the Riemann zeta-function on the critical line II , 2012 .