All-Solution-Processed High-Performance MoS2 Thin-Film Transistors with a Quasi-2D Perovskite Oxide Dielectric.

Assembling solution-processed van der Waals (vdW) materials into thin films holds great promise for constructing large-scale, high-performance thin-film electronics, especially at low temperatures. While transition metal dichalcogenide thin films assembled in solution have shown potential as channel materials, fully solution-processed vdW electronics have not been achieved due to the absence of suitable dielectric materials and high-temperature processing. In this work, we report on all-solution-processedvdW thin-film transistors (TFTs) comprising molybdenum disulfides (MoS2) as the channel and Dion-Jacobson-phase perovskite oxides as the high-permittivity dielectric. The constituent layers are prepared as colloidal solutions through electrochemical exfoliation of bulk crystals, followed by sequential assembly into a semiconductor/dielectric heterostructure for TFT construction. Notably, all fabrication processes are carried out at temperatures below 250 °C. The fabricated MoS2 TFTs exhibit excellent device characteristics, including high mobility (>10 cm2 V-1 s-1) and an on/off ratio exceeding 106. Additionally, the use of a high-k dielectric allows for operation at low voltage (∼5 V) and leakage current (∼10-11 A), enabling low power consumption. Our demonstration of the low-temperature fabrication of high-performance TFTs presents a cost-effective and scalable approach for heterointegrated thin-film electronics.

[1]  J. Coleman,et al.  High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides , 2023, ACS nano.

[2]  Huanting Wang,et al.  Scalable high yield exfoliation for monolayer nanosheets , 2023, Nature Communications.

[3]  L. Lauhon,et al.  Edge and Interface Resistances Create Distinct Trade-Offs When Optimizing the Microstructure of Printed van der Waals Thin-Film Transistors. , 2022, ACS nano.

[4]  Jong-Heon Yang,et al.  High density integration of stretchable inorganic thin film transistors with excellent performance and reliability , 2022, Nature Communications.

[5]  Huaqiang Wu,et al.  Large-Scale Integrated Flexible Tactile Sensor Array for Sensitive Smart Robotic Touch , 2022, ACS nano.

[6]  Ruipeng Li,et al.  All‐Printed Ultrahigh‐Responsivity MoS2 Nanosheet Photodetectors Enabled by Megasonic Exfoliation , 2022, Advanced materials.

[7]  S. Li,et al.  Integration of filter membrane and Ca2Nb3O10 nanosheets for high performance flexible UV photodetectors , 2022, Journal of Materials Science & Technology.

[8]  Wen-Chang Zhou,et al.  Perovskite oxides as a 2D dielectric , 2022, Nature Electronics.

[9]  Peng Gao,et al.  Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors , 2022, Nature Electronics.

[10]  Myung‐Gil Kim,et al.  High-performance inorganic metal halide perovskite transistors , 2022, Nature Electronics.

[11]  D. Rhee,et al.  All‐Solution‐Processed Van der Waals Heterostructures for Wafer‐Scale Electronics , 2021, Advanced materials.

[12]  H. Jeong,et al.  Remote modulation doping in van der Waals heterostructure transistors , 2021, Nature Electronics.

[13]  M. Lanza,et al.  Inkjet Printed Circuits with 2D Semiconductor Inks for High‐Performance Electronics , 2021, Advanced Electronic Materials.

[14]  S. Louie,et al.  Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides , 2021, ACS nano.

[15]  S. Tolbert,et al.  High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices , 2021, Chem.

[16]  J. Coleman,et al.  Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices , 2021, Nature Nanotechnology.

[17]  Dylan S. Shah,et al.  Highly stretchable multilayer electronic circuits using biphasic gallium-indium , 2021, Nature Materials.

[18]  Kenji Watanabe,et al.  2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators , 2021, Nature Communications.

[19]  Jian Zhu,et al.  High-mobility patternable MoS2 percolating nanofilms , 2020, Nano Research.

[20]  Sunkook Kim,et al.  High-Intensity Ultrasound-Assisted Low-Temperature Formulation of Lanthanum Zirconium Oxide Nanodispersion for Thin-Film Transistors. , 2020, ACS applied materials & interfaces.

[21]  T. Ha,et al.  Effects of interfacial dielectric layers on the charge transport characteristics in sol-gel based amorphous metal-oxide thin-film transistors , 2020 .

[22]  J. E. ten Elshof,et al.  Shape Control of Ca2Nb3O10 Nanosheets: Paving the Way for Monolithic Integration of Functional Oxides with CMOS , 2020, ACS Applied Nano Materials.

[23]  Zhaoqian Xie,et al.  Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics , 2020, Nature Communications.

[24]  B. Derby,et al.  Tiled Monolayer Films of 2D Molybdenum Disulfide Nanoflakes Assembled at Liquid/Liquid Interfaces , 2020, ACS applied materials & interfaces.

[25]  A. Pelella,et al.  Electron Irradiation of Metal Contacts in Monolayer MoS2 Field-Effect Transistors , 2020, ACS applied materials & interfaces.

[26]  Sheng Yang,et al.  Ultrafast Electrochemical Synthesis of Defect‐Free In2Se3 Flakes for Large‐Area Optoelectronics , 2020, Advanced materials.

[27]  Siyuan Li,et al.  2D Perovskite Sr2Nb3O10 for High‐Performance UV Photodetectors , 2019, Advanced materials.

[28]  R. L. Peterson,et al.  Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process , 2019, Nature Electronics.

[29]  Ho Won Jang,et al.  Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy , 2019, Nano Energy.

[30]  Yu Huang,et al.  Van der Waals thin-film electronics , 2019, Nature Electronics.

[31]  Seyul Kim,et al.  Low-voltage operating solution-processed CdS thin-film transistor with Ca2Nb3O10 nanosheets deposited using Langmuir–Blodgett method for a gate insulator , 2019, Applied Surface Science.

[32]  X. Duan,et al.  Solution-processable 2D semiconductors for high-performance large-area electronics , 2018, Nature.

[33]  Chang Liu,et al.  Continuous Fabrication of Meter‐Scale Single‐Wall Carbon Nanotube Films and their Use in Flexible and Transparent Integrated Circuits , 2018, Advanced materials.

[34]  Lin Gu,et al.  Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode , 2017, Nature Communications.

[35]  J. Coleman,et al.  All-printed thin-film transistors from networks of liquid-exfoliated nanosheets , 2017, Science.

[36]  Jonathan N. Coleman,et al.  Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation , 2017 .

[37]  Lei Wang,et al.  Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer , 2017, Nature Communications.

[38]  Daohong Zhang,et al.  Enhanced Exfoliation Effect of Solid Auxiliary Agent On the Synthesis of Biofunctionalized MoS2 Using Grindstone Chemistry , 2016 .

[39]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[40]  Qiyuan He,et al.  Cosolvent approach for solution-processable electronic thin films. , 2015, ACS nano.

[41]  Arturo Ponce,et al.  Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation , 2014, Nature Communications.

[42]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[43]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[44]  M. Yun,et al.  Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. , 2013, Nature materials.

[45]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[46]  L. Lauhon,et al.  Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. , 2012, ACS nano.

[47]  M. Osada,et al.  New Dielectric Nanomaterials Fabricated from Nanosheet Technique , 2012 .

[48]  D. Xia,et al.  High mobility and low operating voltage ZnGaO and ZnGaLiO transistors with spin-coated Al2O3 as gate dielectric , 2010 .

[49]  Minoru Osada,et al.  Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. , 2010, ACS nano.

[50]  A. Facchetti,et al.  Role of Gallium Doping in Dramatically Lowering Amorphous‐Oxide Processing Temperatures for Solution‐Derived Indium Zinc Oxide Thin‐Film Transistors , 2010, Advanced materials.

[51]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[52]  F. Mir Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism , 2014 .

[53]  Jin Jang,et al.  Low Voltage Driven, Stable Solution-Processed Zinc-Tin-Oxide TFT with HfOy and AlOx Stack Gate Dielectric , 2012 .