Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations

We study the distribution of the star formation rate (SFR) and metallicity of damped Lyman α absorbers (DLAs) in the redshift range z = 0-4.5 using cosmological smoothed particle hydrodynamics (SPH) simulations of thecold dark matter model. Our simulations include standard radiative cooling and heating with a uniform ultraviolet background, star formation, supernova (SN) feedback, as well as a phenomenological model for feedback by galactic winds. The latter allows us to examine, in particular, the effect of galactic outflows on the distribution of the SFR and metallicity of DLAs. We employ a 'conservative entropy' formulation of SPH which alleviates numerical overcooling effects that affected earlier simulations. In addition, we utilize a series of simulations of varying box-size and particle number to investigate the impact of numerical resolution on our results. We find that there is a positive correlation between the projected stellar mass density and the neutral hydrogen column density (N H I) of DLAs for high N H I systems, and that there is a good correspondence in the spatial distribution of stars and DLAs in the simulations. The evolution of typical star-to-gas mass ratios in DLAs can be characterized by an increase from approximately 2 at z = 4.5 to 3 at z = 3, to 10 at z = 1 and finally to 20 at z = 0. We also find that the projected SFR density in DLAs follows the Kennicutt law well at all redshifts, and the simulated values are consistent with the recent observational estimates of this quantity by Wolfe, Prochaska & Gawiser. The rate of evolution in the mean metallicity of simulated DLAs as a function of redshift is mild, and is consistent with the rate estimated from observations. The predicted metallicity of DLAs is generally subsolar in our simulations, and there is a significant scatter in the distribution of DLA metallicity for a given N H I. However, we find that the median metallicity of simulated DLAs is close to that of Lyman-break galaxies, and is higher than the values typically observed for DLAs by nearly an order of magnitude. This discrepancy with observations could be due to an inadequate treatment of the SN feedback or the multiphase structure of the gas in our current simulations. Alternatively, the current observations might be missing the majority of the high metallicity DLAs due to selection effects.

[1]  Italy.,et al.  Chemical evolution of dwarf spheroidal and blue compact galaxies , 2003, astro-ph/0306463.

[2]  Lars Hernquist,et al.  The First Supernova Explosions in the Universe , 2003, astro-ph/0305333.

[3]  S. Djorgovski,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003, astro-ph/0305314.

[4]  J. Prochaska,et al.  C II* Absorption in Damped Lyα Systems. II. A New Window on the Star Formation History of the Universe , 2003, astro-ph/0304042.

[5]  J. Prochaska,et al.  C II* Absorption in Damped Lyα Systems. I. Star Formation Rates in a Two-Phase Medium , 2003, astro-ph/0304040.

[6]  A. Kravtsov On the Origin of the Global Schmidt Law of Star Formation , 2003, astro-ph/0303240.

[7]  V. Springel,et al.  Cosmic reionization by stellar sources: population III stars , 2003, astro-ph/0303098.

[8]  J. Prochaska,et al.  Damped Lyman alpha systems and galaxy formation models – II. High ions and Lyman-limit systems , 2002, astro-ph/0211231.

[9]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[10]  M. Viel,et al.  Galactic Winds in the Intergalactic Medium , 2002, astro-ph/0208418.

[11]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[12]  V. Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[13]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[14]  J. Prochaska,et al.  Metallicity Evolution of Damped Lyα Systems in ΛCDM Cosmology , 2002, astro-ph/0203524.

[15]  S. White,et al.  Gas cooling in simulations of the formation of the galaxy population , 2002, astro-ph/0202341.

[16]  A. Fernández-Soto,et al.  The Star Formation Rate Intensity Distribution Function: Implications for the Cosmic Star Formation Rate History of the Universe , 2001, astro-ph/0111129.

[17]  J. Prochaska,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. II. The Implications , 2001, astro-ph/0110351.

[18]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[19]  J. Prochaska,et al.  Damped Lyman alpha systems and galaxy formation models – I. The radial distribution of cold gas at high z , 2001 .

[20]  J. Schaye A Physical Upper Limit on the H I Column Density of Gas Clouds , 2001, astro-ph/0109280.

[21]  I. Hook,et al.  The corals survey I: new estimates of the number density and gas content of damped lyman alpha systems free from dust bias , 2001, astro-ph/0109205.

[22]  K. Nagamine Lyman Break Galaxies: Their Progenitors and Descendants , 2001, astro-ph/0109104.

[23]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[24]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[25]  M. Fukugita,et al.  Star Formation History and Stellar Metallicity Distribution in a Cold Dark Matter Universe , 2000, astro-ph/0011472.

[26]  Lars Hernquist,et al.  Hydrodynamic Simulation of the Cosmological X-Ray Background , 2000, astro-ph/0010345.

[27]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[28]  Lisa J. Storrie-Lombardi,et al.  Surveys for z > 3 Damped Lyα Absorption Systems: The Evolution of Neutral Gas , 2000 .

[29]  D. Weinberg,et al.  High-Redshift Galaxies in Cold Dark Matter Models , 2000, astro-ph/0005340.

[30]  J. Prochaska,et al.  Metallicity Evolution in the Early Universe , 2000, The Astrophysical journal.

[31]  N. Prantzos,et al.  Metallicity in damped Lyman-α systems: evolution or bias? , 2000, astro-ph/0001313.

[32]  C. Flynn,et al.  The local density of matter mapped by hipparcos , 1998, astro-ph/9812404.

[33]  D. Weinberg,et al.  Simulations of Damped Lyα and Lyman Limit Absorbers in Different Cosmologies: Implications for Structure Formation at High Redshift , 1999, astro-ph/9911343.

[34]  A. Fabian,et al.  A Rossi X-Ray Timing Explorer Study of M87 and the Core of the Virgo Cluster , 1999 .

[35]  J. Peacock,et al.  A Simulation of Galaxy Formation and Clustering , 1999, astro-ph/9905160.

[36]  R. Jimenez,et al.  On the Origin of Damped Lyα Systems: A Case for Low Surface Brightness Galaxies? , 1999 .

[37]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[38]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe — II. Evolution to high redshift , 1998, astro-ph/9809168.

[39]  S. White,et al.  The structure and clustering of Lyman-break galaxies , 1998, astro-ph/9807341.

[40]  M. Blanton,et al.  The Physical Origin of Scale-dependent Bias in Cosmological Simulations , 1998, astro-ph/9807029.

[41]  D. Weinberg,et al.  The Clustering of High-Redshift Galaxies in the Cold Dark Matter Scenario , 1998, astro-ph/9806257.

[42]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[43]  J. Prochaska,et al.  Chemical Abundances of the Damped Lyα Systems at z > 1.5 , 1998, astro-ph/9810381.

[44]  A. Fernández-Soto,et al.  The Ultraviolet Luminosity Density of the Universe from Photometric Redshifts of Galaxies in the Hubble Deep Field , 1998, astro-ph/9810060.

[45]  C. Steidel,et al.  Metal Abundances at z < 1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems , 1998, astro-ph/9808017.

[46]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[47]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[48]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[49]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[50]  J. Prochaska,et al.  Protogalactic Disk Models of Damped Lyα Kinematics , 1998, astro-ph/9805293.

[51]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[52]  D. Weinberg,et al.  Testing Cosmological Models against the Abundance of Damped Lyman-Alpha Absorbers , 1997, astro-ph/9705118.

[53]  D. Weinberg,et al.  The Population of Damped Lyα and Lyman Limit Systems in the Cold Dark Matter Model , 1996, astro-ph/9609072.

[54]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[55]  M. Fukugita,et al.  Constraints on the Cosmic Structure Formation Models from Early Formation of Giant Galaxies , 1996, astro-ph/9604034.

[56]  G. Kauffmann Disc galaxies at z = 0 and at high redshift: an explanation of the observed evolution of damped Lya absorption systems , 1995, astro-ph/9512123.

[57]  C. Foltz,et al.  The Large Bright QSO Survey for Damped LY alpha Absorption Systems , 1995 .

[58]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[59]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[60]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[61]  R. Wyse,et al.  Chemistry and Kinematics in the Solar Neighborhood: Implications for Stellar Populations and for Galaxy Evolution , 1995, astro-ph/9509007.

[62]  C. Flynn,et al.  Density of Matter in the Galactic Disk , 1994 .

[63]  Linda J. Smith,et al.  Metal Enrichment, Dust, and Star Formation in Galaxies at High Redshifts. III. Zn and CR Abundances for 17 Damped Lyman-Alpha Systems , 1994 .

[64]  S. Holt,et al.  Back to the Galaxy , 1993 .

[65]  L. Hernquist,et al.  Some cautionary remarks about smoothed particle hydrodynamics , 1993 .

[66]  K. Lanzetta QSO Absorption Lines: Implications for Galaxy Formation and Evolution , 1993 .

[67]  J. Michael Shull,et al.  The Environment and Evolution of Galaxies , 1993 .

[68]  Andrew Gould,et al.  Local dark matter from a carefully selected sample , 1992 .

[69]  Konrad Kuijken,et al.  The galactic disk surface mass density and the Galactic force K(z) at z = 1. 1 kiloparsecs , 1991 .

[70]  C. Baugh,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[71]  Konrad Kuijken,et al.  The mass distribution in the galactic disc – II. Determination of the surface mass density of the galactic disc near the Sun , 1989 .

[72]  J. B. Laird,et al.  A Survey of Proper-Motion Stars. VII. The Halo Metallicity Distribution Function , 1988 .

[73]  Ross D. Cohen,et al.  Damped Lyman-Alpha Absorption by Disk Galaxies with Large Redshifts. I. The Lick Survey , 1986 .

[74]  J. Bahcall K-giants and the total amount of matter near the Sun. , 1984 .

[75]  M. S. Roberts Galactic astronomy. , 1981, Science.

[76]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[77]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[78]  R. Blandford,et al.  XII CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS , 2022 .