Flexural strength behavior of a ZrB2–TaB2 composite consolidated by non-reactive spark plasma sintering at 2300 °C

[1]  O. Vasylkiv,et al.  Hot-spots generation, exaggerated grain growth and mechanical performance of silicon carbide bulks consolidated by flash spark plasma sintering , 2017 .

[2]  Y. Sakka,et al.  Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering , 2017 .

[3]  O. Vasylkiv,et al.  Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering , 2016 .

[4]  O. Vasylkiv,et al.  Consolidation and grain growth of tantalum diboride during spark plasma sintering , 2016 .

[5]  Y. Sakka,et al.  High‐Temperature Strength of Boron Suboxide Ceramic Consolidated by Spark Plasma Sintering , 2016 .

[6]  Y. Sakka,et al.  High‐Strength B4C–TaB2 Eutectic Composites Obtained via In Situ by Spark Plasma Sintering , 2016 .

[7]  D. Sciti,et al.  Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering , 2016 .

[8]  G. Hilmas,et al.  Elevated Temperature Strength Enhancement of ZrB2–30 vol% SiC Ceramics by Postsintering Thermal Annealing , 2016 .

[9]  Y. Sakka,et al.  Hardness and toughness control of brittle boron suboxide ceramics by consolidation of star-shaped particles by spark plasma sintering , 2016 .

[10]  Y. Sakka,et al.  High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation , 2016 .

[11]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C , 2015 .

[12]  Y. Sakka,et al.  High-temperature reaction consolidation of TaC–TiB2 ceramic composites by spark-plasma sintering , 2015 .

[13]  Y. Sakka,et al.  Microstructure and high-temperature strength of textured and non-textured ZrB2 ceramics , 2013, Science and technology of advanced materials.

[14]  William G. Fahrenholtz,et al.  Strength of Zirconium Diboride to 2300°C , 2013 .

[15]  Y. Sakka,et al.  High-temperature bending strength, internal friction and stiffness of ZrB2–20 vol% SiC ceramics , 2012 .

[16]  Bjørn Clausen,et al.  Measurement of thermal residual stresses in ZrB2–SiC composites , 2011 .

[17]  G. Hilmas,et al.  Synthesis, densification, and mechanical properties of TaB2 , 2008 .

[18]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[19]  R. Steiger,et al.  Sintering and Properties of Titanium Diboride Made from Powder Synthesized in a Plasma‐Arc Heater , 2006 .

[20]  Erica L. Corral,et al.  Ultra High Temperature Ceramics for Hypersonic Vehicle Applications , 2006 .

[21]  Y. S. Touloukian Thermal Expansion: Nonmetallic Solids , 1977 .

[22]  D. Kalish,et al.  Research and Development of Refractory Oxidation-Resistant Diborides. Part II, Volume IV: Mechanical Properties. , 1970 .

[23]  D. Kalish,et al.  Strength, Fracture Mode, and Thermal Stress Resistance of HfB2 and ZrB2 , 1969 .