Positivity-preserving method for high-order conservative schemes solving compressible Euler equations

In this work a simple method to enforce the positivity-preserving property for general high-order conservative schemes is proposed for solving compressible Euler equations. The method detects critical numerical fluxes which may lead to negative density and pressure, and for such critical fluxes imposes a simple flux limiter by combining the high-order numerical flux with the first-order Lax-Friedrichs flux to satisfy a sufficient condition for preserving positivity. Though an extra time-step size condition is required to maintain the formal order of accuracy, it is less restrictive than those in previous works. A number of numerical examples suggest that this method, when applied on an essentially non-oscillatory scheme, can be used to prevent positivity failure when the flow involves vacuum or near vacuum and very strong discontinuities.

[1]  Jean-Marc Moschetta,et al.  Regular Article: Positivity of Flux Vector Splitting Schemes , 1999 .

[2]  Nikolaus A. Adams,et al.  Scale separation for implicit large eddy simulation , 2011, J. Comput. Phys..

[3]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[4]  Xiangyu Hu,et al.  Kinetic energy fix for low internal energy flows , 2004 .

[5]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[6]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[7]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[8]  Cheng Wang,et al.  Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations , 2012, J. Comput. Phys..

[9]  Dimitris Drikakis,et al.  Mach number effects on shock-bubble interaction , 2001 .

[10]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[11]  Kun Xu,et al.  Gas-kinetic schemes for the compressible Euler equations : Positivity-preserving analysis , 1999 .

[12]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[13]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[15]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[16]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[17]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[18]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[19]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[20]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[21]  Soshi Kawai,et al.  Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes , 2008, J. Comput. Phys..

[22]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[23]  Jang-Hyuk Kwon,et al.  A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis , 2005 .

[24]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[25]  Xu-Dong Liu,et al.  Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II , 2003 .

[26]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..