Function projective lag synchronization of fractional-order chaotic systems

Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.

[1]  Zhaosheng Feng,et al.  Synchrony and lag synchrony on a neuron model coupling with time delay , 2010 .

[2]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[3]  Ahmed Sadek Hegazi,et al.  Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system , 2011, Appl. Math. Lett..

[4]  Guohui Li,et al.  Projective lag synchronization in chaotic systems , 2009 .

[5]  Zhang Wei,et al.  Projective synchronization of a hyperchaotic system via periodically intermittent control , 2012 .

[6]  Hao Zhang,et al.  Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system , 2013 .

[7]  R. Tang,et al.  An extended active control for chaos synchronization , 2009 .

[8]  Xinzhi Liu,et al.  Synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control , 2012 .

[9]  Tae-Hee Lee,et al.  Adaptive Functional Projective Lag Synchronization of a Hyperchaotic Rössler System , 2009 .

[10]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[11]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[12]  余淼,et al.  Modified impulsive synchronization of fractional order hyperchaotic systems , 2011 .

[13]  Lei Sun,et al.  A fractional order hyperchaotic system derived from a Liu system and its circuit realization , 2013 .

[14]  Qigui Yang,et al.  Parameter identification and synchronization of fractional-order chaotic systems , 2012 .

[15]  Guan Wang,et al.  Exponential synchronization of coupled memristive neural networks via pinning control , 2013 .

[16]  G. Mahmoud,et al.  Lag synchronization of hyperchaotic complex nonlinear systems , 2012 .

[17]  Rong Zhang,et al.  Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order , 2007 .

[18]  Yongguang Yu,et al.  Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design , 2011 .

[19]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[20]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[21]  Jianfeng Lu,et al.  Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems , 2008 .

[22]  I. Podlubny Fractional differential equations , 1998 .

[23]  J. Saeidian,et al.  Comments on "R.A. Van Gorder and K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 4078-4089" , 2012 .

[24]  Bin Deng,et al.  Adaptive synchronization control of coupled chaotic neurons in an external electrical stimulation , 2013 .

[25]  Lee Sun-Jin From Chaos to Order , 2011 .

[26]  杨世平,et al.  Adaptive lag synchronization and parameter identification of fractional order chaotic systems , 2011 .

[27]  Chi-Keung Ng,et al.  Crossed products of C∗-correspondences by amenable group actions☆ , 2008 .

[28]  Wei-Sheng Chen,et al.  Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems , 2013 .

[29]  Yi Chai,et al.  Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems , 2011 .

[30]  N. Kopell,et al.  Dynamics of two mutually coupled slow inhibitory neurons , 1998 .

[31]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[32]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[33]  Wenquan Chen,et al.  Projective synchronization of different fractional-order chaotic systems with non-identical orders , 2012 .

[34]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[35]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[36]  Wanli Guo,et al.  Lag synchronization of complex networks via pinning control , 2011 .

[37]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[38]  Sha Wang,et al.  Hybrid projective synchronization of chaotic fractional order systems with different dimensions , 2010 .

[39]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[40]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[41]  Mohd. Salmi Md. Noorani,et al.  Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control , 2012 .

[42]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[43]  Naser Pariz,et al.  A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter , 2009 .

[44]  Zhang Yanbin,et al.  Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions , 2012 .