Symmetry in Domination for Hypergraphs with Choice

In this paper, we introduce the concept of (pair-wise) domination graphs for hypergraphs endowed with a choice function on edges. We are interested, for instance, in minimal numbers of edges for associated domination graphs. Theorems regarding the existence of balanced (zero-edge) domination graphs are presented. Several open questions are posed.

[1]  Zhang Kemin,et al.  On Score Sequences ofk-Hypertournaments , 2000 .

[2]  Joshua N. Cooper,et al.  Deterministic walks with choice , 2014, Discret. Appl. Math..

[3]  Zhou Guofei,et al.  Note: Note on the degree sequences of k-hypertournaments , 2008 .

[4]  Guofei Zhou,et al.  On k-hypertournament losing scores , 2010, ArXiv.

[5]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[6]  Shariefuddin Pirzada,et al.  Uniform sampling of k-hypertournaments , 2013 .

[7]  5 S ep 2 00 6 SCORE SETS IN k-PARTITE TOURNAMENTS , 2006 .

[8]  Michel Surmacs Regular Hypertournaments and Arc-Pancyclicity , 2017, J. Graph Theory.

[9]  Chao Wang,et al.  Note on the degree sequences of k-hypertournaments , 2008, Discret. Math..

[10]  S. Pirzada,et al.  Score lists in (h,k)-bipartite hypertournaments , 2006, math/0609134.

[11]  Guofei Zhou,et al.  On scores, losing scores and total scores in hypertournaments , 2015, Electron. J. Graph Theory Appl..

[12]  Karen Gunderson,et al.  Bounding the number of hyperedges in friendship r-hypergraphs , 2016, Eur. J. Comb..

[13]  Stephen Brookes Fairness, Resources, and Separation , 2010, MFPS.

[14]  Hervé Moulin,et al.  Choice functions over a finite set: A summary , 1985 .

[15]  M. Krawczyk A model of procedural and distributive fairness , 2007 .

[16]  Hongwei Li,et al.  On the vertex-pancyclicity of hypertournaments , 2013, Discret. Appl. Math..

[17]  Youngmee Koh,et al.  On k-hypertournament matrices , 2003 .

[18]  S. Marshall Properties of k-tournaments , 1994 .

[19]  Daniele Varacca,et al.  Defining Fairness in Reactive and Concurrent Systems , 2012, JACM.

[20]  Manfred Jaeger On fairness and randomness , 2009, Inf. Comput..

[21]  Ideal Structures of Path Independent Choice Functions , 1995 .

[22]  Colin Cooper,et al.  Derandomizing random walks in undirected graphs using locally fair exploration strategies , 2011, Distributed Computing.

[23]  Yubao Guo,et al.  Pancyclic out-arcs of a vertex in a hypertournament , 2015, Australas. J Comb..

[24]  Shariefuddin Pirzada,et al.  Scores, inequalities and regular hypertournaments , 2012 .