Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43°S): The role of fluids in generating arc magmas

[1]  D. Garbe‐Schönberg,et al.  Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43°S) , 2014, International Journal of Earth Sciences.

[2]  D. Garbe‐Schönberg,et al.  Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas , 2014, International Journal of Earth Sciences.

[3]  D. Pyle,et al.  Arc magma compositions controlled by linked thermal and chemical gradients above the subducting slab , 2013 .

[4]  S. Kay,et al.  Origin of Tertiary to Recent EM- and subduction-like chemical and isotopic signatures in Auca Mahuida region (37°–38°S) and other Patagonian plateau lavas , 2013, Contributions to Mineralogy and Petrology.

[5]  D. Garbe‐Schönberg,et al.  Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): Constraints on mantle wedge and slab input compositions , 2012 .

[6]  W. Rabbel,et al.  Seismicity near the slip maximum of the 1960 Mw 9.5 Valdivia earthquake (Chile): Plate interface lock and reactivation of the subducted Valdivia Fracture Zone , 2012 .

[7]  W. Rabbel,et al.  Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum — Insights into fluid release and plate coupling , 2012 .

[8]  D. Garbe‐Schönberg,et al.  Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite , 2012 .

[9]  K. Haase,et al.  On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5–11°S): Shallow or deep recycling of ocean crust and/or intraplate volcanism? , 2011 .

[10]  C. Langmuir,et al.  Assimilation of the Plutonic Roots of the Andean Arc Controls Variations in U-series Disequilibria at Volcan Llaima, Chile , 2011 .

[11]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[12]  C. Mandeville,et al.  Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina) , 2010 .

[13]  A. Kent,et al.  Origin of cross‐chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes , 2010 .

[14]  G. Franz,et al.  Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S) , 2010 .

[15]  Takeyoshi Yoshida,et al.  Arc Basalt Simulator version 2, a simulation for slab dehydration and fluid‐fluxed mantle melting for arc basalts: Modeling scheme and application , 2009 .

[16]  I. Bindeman,et al.  New insights into the origin of O–Hf–Os isotope signatures in arc lavas from Tonga–Kermadec , 2009 .

[17]  J. Cembrano,et al.  The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review , 2009 .

[18]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[19]  S. Kutterolf,et al.  Comparative mass balance of volcanic edifices at the Southern Volcanic Zone of the Andes between 33°S and 46°S , 2011 .

[20]  E. Flueh,et al.  Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at ∼38°S , 2008 .

[21]  C. Heubeck,et al.  Turbidites deposited on Southern Central Chilean seamounts: Evidence for energetic turbidity currents , 2008 .

[22]  J. Hermann,et al.  Sediment Melts at Sub-arc Depths: an Experimental Study , 2008 .

[23]  W. Strauch,et al.  Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua , 2008, Nature.

[24]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[25]  I. Bindeman Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis , 2008 .

[26]  E. Flueh,et al.  Alteration of the subducting oceanic lithosphere at the southern central Chile trench–outer rise , 2007 .

[27]  J. Bialas,et al.  Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench , 2007 .

[28]  J. Blichert‐Toft,et al.  Hafnium, neodymium, and strontium isotope and parent‐daughter element systematics in basalts from the plume‐ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate , 2007 .

[29]  S. Kay,et al.  The Somuncura Large Igneous Province in Patagonia: Interaction of a Transient Mantle Thermal Anomaly with a Subducting Slab , 2007 .

[30]  Z. Pécskay,et al.  Preliminary K/Ar geochronology of the Crater Basalt volcanic field (CBVF), northern Patagonia , 2007 .

[31]  B. Jicha,et al.  Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile , 2006 .

[32]  K. Hoernle,et al.  Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic) , 2006 .

[33]  Hans-Jürgen Götze,et al.  Three‐dimensional density model of the Nazca plate and the Andean continental margin , 2006 .

[34]  Katherine A. Kelley,et al.  Mantle melting as a function of water content beneath back-arc basins , 2006 .

[35]  M. D’Orazio,et al.  Sub-recent volcanism in Northern Patagonia: A tectonomagmatic approach , 2006 .

[36]  W. Weinrebe,et al.  Tectonic Processes along the Chile Convergent Margin , 2006 .

[37]  W. Weinrebe,et al.  Relationship between bend‐faulting at trenches and intermediate‐depth seismicity , 2005 .

[38]  D. Hilton,et al.  The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano , 2005 .

[39]  J. Eiler,et al.  Oxygen isotope evidence for slab melting in modern and ancient subduction zones , 2005 .

[40]  Michael J. Carr,et al.  Oxygen isotope constraints on the sources of Central American arc lavas , 2005 .

[41]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[42]  F. Hauff,et al.  Sr‐Nd isotope systematics in 14–28 Ma low‐temperature altered mid‐ocean ridge basalt from the Australian Antarctic Discordance, Ocean Drilling Program Leg 187 , 2005 .

[43]  I. N. Bindemana,et al.  Oxygen isotope evidence for slab melting in modern and ancient subduction zones , 2005 .

[44]  C. Stern Active Andean volcanism: its geologic and tectonic setting , 2004 .

[45]  J. Naranjo,et al.  Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone , 2004 .

[46]  J. Naranjo,et al.  Geochemistry of Nevado de Longaví Volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes , 2004 .

[47]  S. Kay,et al.  Magmatic sources, setting and causes of Eocene to Recent Patagonian plateau magmatism (36°S to 52°S latitude) , 2004 .

[48]  P. Vásquez,et al.  Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36–41°S) ☆ , 2004 .

[49]  M. Dungan,et al.  Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes , 2004 .

[50]  Matthias Hort,et al.  Serpentine and the subduction zone water cycle , 2004 .

[51]  J. Valley,et al.  Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust , 2004 .

[52]  J. Morgan,et al.  Bending-related faulting and mantle serpentinization at the Middle America trench , 2003, Nature.

[53]  Katherine A. Kelley,et al.  Composition of altered oceanic crust at ODP Sites 801 and 1149 , 2003 .

[54]  L. Rüpke,et al.  Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids , 2002 .

[55]  J. Blichert‐Toft,et al.  Hafnium isotopes in basalts from the southern Mid‐Atlantic Ridge from 40°S to 55°S: Discovery and Shona plume–ridge interactions and the role of recycled sediments , 2002 .

[56]  J. Chmeleff,et al.  Origin of 226Ra–230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time , 2002 .

[57]  M. Reagan,et al.  Multiple subduction components in the mantle wedge: Evidence from eruptive centers in the Central Southern volcanic zone, Chile , 2002 .

[58]  K. Haase Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific): a case study of plume-ridge interaction , 2002 .

[59]  Ren A. Thompson,et al.  Eruptive Stratigraphy of the Tatara–San Pedro Complex, 36°S, Southern Volcanic Zone, Chilean Andes: Reconstruction Method and Implications for Magma Evolution at Long-lived Arc Volcanic Centers , 2001 .

[60]  J. Blundy,et al.  SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C , 2000 .

[61]  Detlef Angermann,et al.  Space-geodetic estimation of the nazca-south america euler vector , 1999 .

[62]  E. M. Klein,et al.  Age constraints on crustal recycling to the mantle beneath the southern Chile Ridge: He‐Pb‐Sr‐Nd isotope systematics , 1999 .

[63]  J. Schilling,et al.  Plume‐ridge interactions of the Discovery and Shona mantle plumes with the southern Mid‐Atlantic Ridge (40°‐55°S) , 1999 .

[64]  T. Dixon,et al.  Space geodetic observations of nazca-south america convergence across the central andes , 1998, Science.

[65]  G. Wasserburg,et al.  Osmium isotopic compositions and Re–Os concentrations in sulfide globules from basaltic glasses , 1998 .

[66]  F. Albarède,et al.  “The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system”: [Earth Planet. Sci. Lett. 148 (1997) 243–258]1 , 1998 .

[67]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[68]  S. Cande,et al.  The Chile ridge: A tectonic framework , 1997 .

[69]  S. Cande,et al.  Southeast Pacific tectonic evolution from Early Oligocene to Present , 1997 .

[70]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[71]  W. Bach,et al.  Unusually large NbTa depletions in North Chile ridge basalts at 36°50′ to 38°56′S: major element, trace element, and isotopic data , 1996 .

[72]  J. Schilling,et al.  Mantle heterogeneities beneath the South Atlantic: a NdSrPb isotope study along the Mid-Atlantic Ridge (3°S–46°S) , 1996 .

[73]  J. Cembrano,et al.  Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37-46°S) , 1995 .

[74]  M. Kohn,et al.  UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .

[75]  E. M. Klein,et al.  Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge , 1995, Nature.

[76]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[77]  M. Kurz,et al.  Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific rise, 13-23°S , 1994 .

[78]  H. Moreno,et al.  Two magma types of the high-alumina basalt series of Osorno Volcano, Southern Andes (41°06'S)-Plagioclase dilution effect , 1993 .

[79]  Peter A. Cawood,et al.  Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative chemistry, and tectonic implications , 1991 .

[80]  J. Schilling,et al.  87Sr86Sr and REE variations along the Easter Microplate boundaries (south Pacific): Application of multivariate statistical analyses to ridge segmentation , 1991 .

[81]  F. Frey,et al.  Recent lavas from the Andean volcanic front (33 to 42°S); Interpretations of along-arc compositional variations , 1991 .

[82]  J. Morris,et al.  Uranium and 10Be enrichments by fluids in Andean arc magmas , 1990, Nature.

[83]  C. Stern,et al.  Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America , 1990 .

[84]  J. Morris,et al.  The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics , 1990, Nature.

[85]  R. Harmon,et al.  Crustal sources involved in continental arc magmatism: A case study of volcan Mocho-Choshuenco, southern Chile , 1989 .

[86]  H. M. Roa,et al.  Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5° S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation , 1989 .

[87]  B. Hanan,et al.  Easter microplate evolution: Pb isotope evidence , 1989 .

[88]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[89]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[90]  C. Stern,et al.  Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes , 1988 .

[91]  D. C. Gerlach,et al.  Recent volcanism in the Puyehue Cordon-Caulle region , 1988 .

[92]  W. Hildreth,et al.  Crustal contributions to arc magmatism in the Andes of Central Chile , 1988 .

[93]  C. Hawkesworth,et al.  The Pleistocene-Recent Tonga-Kermadec Arc Lavas: Interpretation of New Isotopic and Rare Earth Data in Terms of a Depleted Mantle Source Model , 1987 .

[94]  A. Hofmann,et al.  Isotope geochemistry of Pacific Mid‐Ocean Ridge Basalt , 1987 .

[95]  E. Ito,et al.  The O, Sr, Nd and Pb isotope geochemistry of MORB , 1987 .

[96]  H. Newsom,et al.  Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth's core , 1986 .

[97]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[98]  B. Hanan,et al.  Pb isotope evidence in the South Atlantic for migrating ridge—hotspot interactions , 1986, Nature.

[99]  D. C. Gerlach,et al.  Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41°S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust , 1986 .

[100]  J. Macdougall,et al.  Sr and Nd isotopes in basalts from the East Pacific Rise: significance for mantle heterogeneity , 1986 .

[101]  P. Francis,et al.  Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera , 1984, Journal of the Geological Society.

[102]  B. Hamelin,et al.  Lead-strontium isotopic variations along the East Pacific Rise and the Mid-Atlantic Ridge: a comparative study , 1984 .

[103]  D. C. Gerlach,et al.  Geochemical Variations in Volcanic Rocks from Central-south Chile (33–42°S) , 1984 .

[104]  J. Gill Orogenic Andesites and Plate Tectonics , 1981 .

[105]  S. Cande,et al.  An active spreading center collides with a subduction zone: A geophysical survey of the Chile Margin triple junction , 1981 .