Analysis of hybrid soft and hard computing techniques for forex monitoring systems

The need for intelligent monitoring systems has become a necessity to keep track of the complex forex market. The vast currency market is a foreign concept to the average individual. We attempt to compare the performance of hybrid soft computing and hard computing techniques to predict the average monthly forex rates one month ahead. The soft computing models considered are a neural network trained by the scaled conjugate gradient algorithm and a neurofuzzy model implementing a Takagi-Sugeno fuzzy inference system. We also considered multivariate adaptive regression splines (MARS), classification and regression trees (CART) and a hybrid CART-MARS technique. We considered the exchange rates of Australian dollar with respect to US dollar, Singapore dollar, New Zealand dollar, Japanese yen and United Kingdom pounds. The models were trained using 70% of the data and remaining was used for testing and validation purposes. It is observed that the proposed hybrid models could predict the forex rates more accurately than all the techniques when applied individually. Empirical results also reveal that the hybrid hard computing approach also improved some of our previous work using a neuro-fuzzy approach.