Ambidextrous objects and trace functions for nonsemisimple categories
暂无分享,去创建一个
[1] Robert Steinberg,et al. Representations of Algebraic Groups , 1963, Nagoya Mathematical Journal.
[2] Richard G. Larson,et al. An Associative Orthogonal Bilinear Form for Hopf Algebras , 1969 .
[3] U. Oberst,et al. Über Untergruppen Endlicher Algebraischer Gruppen , 1973 .
[4] Victor G. Kac,et al. Characters of typical representations of classical lie superalgebras , 1977 .
[5] J. Humphreys. Symmetry for finite dimensional Hopf algebras , 1978 .
[6] J. L. Alperin,et al. Local representation theory: Index , 1986 .
[7] D. Benson,et al. Representations and Cohomology , 1991 .
[8] H. H. Andersen,et al. Representations of quantum algebras , 1991 .
[9] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[10] Susan Montgomery,et al. Hopf algebras and their actions on rings , 1993 .
[11] Spherical Categories , 1993, hep-th/9310164.
[12] L. Kauffman,et al. A Necessary and Sufficient Condition for a Finite-Dimensional Drinfel′d Double to Be a Ribbon Hopf Algebra , 1993 .
[13] J. Alperin. Local Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups , 1993 .
[14] D. Radford. Minimal Quasitriangular Hopf Algebras , 1993 .
[15] Minoru Wakimoto,et al. Integrable Highest Weight Modules over Affine Superalgebras and Number Theory , 1994 .
[16] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[17] Mark D. Gould,et al. Quantum double finite group algebras and link polynomials , 1994, Bulletin of the Australian Mathematical Society.
[18] Rolf Farnsteiner. On Frobenius Extensions Defined by Hopf Algebras , 1994 .
[19] P. H. Kropholler,et al. REPRESENTATIONS AND COHOMOLOGY I: Basic representation theory of finite groups and associative algebras , 1994 .
[20] Andrew Granville,et al. Defect zero p-blocks for finite simple groups , 1996 .
[21] Sarah Witherspoon,et al. The Representation Ring of the Quantum Double of a Finite Group , 1996 .
[22] Timothy J. Hodges,et al. A GUIDE TO QUANTUM GROUPS , 1997 .
[23] M. Lorenz. Representations of Finite-Dimensional Hopf Algebras , 1997 .
[24] Cosovereign Hopf algebras , 1999, math/9902030.
[25] C. Bendel. Generalized Reduced Enveloping Algebras for Restricted Lie Algebras , 1999 .
[26] On the ghost centre of Lie superalgebras , 1999, math/9910114.
[27] A. Kirillov,et al. Lectures on tensor categories and modular functors , 2000 .
[28] Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q(n) , 2002, math/0207024.
[29] Finite tensor categories , 2003, math/0301027.
[30] An analogue of Radford's S4 formula for finite tensor categories , 2004, math/0404504.
[31] MULTIVARIABLE LINK INVARIANTS ARISING FROM LIE SUPERALGEBRAS OF TYPE I , 2006, math/0609034.
[32] J. Fuchs. On non-semisimple fusion rules and tensor categories , 2006, hep-th/0602051.
[33] REPRESENTATIONS OF QUANTUM GROUPS AT ROOTS OF UNITY , 2008 .
[34] S. Westreich,et al. Characters and a Verlinde-type formula for symmetric Hopf algebras , 2008 .
[35] V. Turaev,et al. Modified 6j-Symbols and 3-Manifold Invariants , 2009, 0910.1624.
[36] Representations of Lie superalgebras in prime characteristic II: The queer series , 2009 .
[37] Weiqiang Wang,et al. Representations of Lie superalgebras in prime characteristic I , 2008, 0808.0046.
[38] Brian D. Boe,et al. Complexity and Module Varieties for Classical Lie Superalgebras , 2009, 0905.2403.
[39] A. Tsuchiya,et al. The Triplet Vertex Operator Algebra W(p) and the Restricted Quantum Group at Root of Unity , 2009, 0902.4607.
[40] Representations of Lie superalgebras in prime characteristic, III , 2009, 0910.2077.
[41] V. Mazorchuk,et al. Serre functors for Lie algebras and superalgebras , 2010, 1008.1166.
[42] Nathan Geer,et al. Generalized trace and modified dimension functions on ribbon categories , 2010, 1001.0985.
[43] V. Turaev,et al. Tetrahedral forms in monoidal categories and 3-manifold invariants , 2010, 1008.3103.
[44] J. Kujawa,et al. Modified Traces on Deligne's Category Rep(S_{t}) , 2011, 1103.2082.
[45] V. Serganova. On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra , 2011 .
[46] On blocks of Deligne's category Re _ p ( S t ) , 2009, 0910.5695.
[47] Nathan Geer,et al. Traces on ideals in pivotal categories , 2011, 1103.1660.
[48] The triplet vertex operator algebra $W(p)$ and the restricted quantum group $\bar{U}_q (sl_2)$ at $q = e^{\frac{\pi i}{p}}$ , 2011 .
[49] Brian D. Boe,et al. Complexity for modules over the classical Lie superalgebra $\Xmathfrak {gl}(m|n)$ , 2011, Compositio Mathematica.
[50] Modified traces on Deligne’s category $\underline{\mathrm{Re}}\hspace{0.7pt}\mathrm{p} (S_{t})$ , 2012 .