Ambidextrous objects and trace functions for nonsemisimple categories

We provide a necessary and sufficient condition for a simple object in a pivotal k-category to be ambidextrous. As a consequence we prove that they exist for factorizable ribbon Hopf algebras, modular representations of finite groups and their quantum doubles, complex and modular Lie (super)algebras, the (1,p) minimal model in conformal field theory, and quantum groups at a root of unity.

[1]  Robert Steinberg,et al.  Representations of Algebraic Groups , 1963, Nagoya Mathematical Journal.

[2]  Richard G. Larson,et al.  An Associative Orthogonal Bilinear Form for Hopf Algebras , 1969 .

[3]  U. Oberst,et al.  Über Untergruppen Endlicher Algebraischer Gruppen , 1973 .

[4]  Victor G. Kac,et al.  Characters of typical representations of classical lie superalgebras , 1977 .

[5]  J. Humphreys Symmetry for finite dimensional Hopf algebras , 1978 .

[6]  J. L. Alperin,et al.  Local representation theory: Index , 1986 .

[7]  D. Benson,et al.  Representations and Cohomology , 1991 .

[8]  H. H. Andersen,et al.  Representations of quantum algebras , 1991 .

[9]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[10]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[11]  Spherical Categories , 1993, hep-th/9310164.

[12]  L. Kauffman,et al.  A Necessary and Sufficient Condition for a Finite-Dimensional Drinfel′d Double to Be a Ribbon Hopf Algebra , 1993 .

[13]  J. Alperin Local Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups , 1993 .

[14]  D. Radford Minimal Quasitriangular Hopf Algebras , 1993 .

[15]  Minoru Wakimoto,et al.  Integrable Highest Weight Modules over Affine Superalgebras and Number Theory , 1994 .

[16]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[17]  Mark D. Gould,et al.  Quantum double finite group algebras and link polynomials , 1994, Bulletin of the Australian Mathematical Society.

[18]  Rolf Farnsteiner On Frobenius Extensions Defined by Hopf Algebras , 1994 .

[19]  P. H. Kropholler,et al.  REPRESENTATIONS AND COHOMOLOGY I: Basic representation theory of finite groups and associative algebras , 1994 .

[20]  Andrew Granville,et al.  Defect zero p-blocks for finite simple groups , 1996 .

[21]  Sarah Witherspoon,et al.  The Representation Ring of the Quantum Double of a Finite Group , 1996 .

[22]  Timothy J. Hodges,et al.  A GUIDE TO QUANTUM GROUPS , 1997 .

[23]  M. Lorenz Representations of Finite-Dimensional Hopf Algebras , 1997 .

[24]  Cosovereign Hopf algebras , 1999, math/9902030.

[25]  C. Bendel Generalized Reduced Enveloping Algebras for Restricted Lie Algebras , 1999 .

[26]  On the ghost centre of Lie superalgebras , 1999, math/9910114.

[27]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[28]  Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q(n) , 2002, math/0207024.

[29]  Finite tensor categories , 2003, math/0301027.

[30]  An analogue of Radford's S4 formula for finite tensor categories , 2004, math/0404504.

[31]  MULTIVARIABLE LINK INVARIANTS ARISING FROM LIE SUPERALGEBRAS OF TYPE I , 2006, math/0609034.

[32]  J. Fuchs On non-semisimple fusion rules and tensor categories , 2006, hep-th/0602051.

[33]  REPRESENTATIONS OF QUANTUM GROUPS AT ROOTS OF UNITY , 2008 .

[34]  S. Westreich,et al.  Characters and a Verlinde-type formula for symmetric Hopf algebras , 2008 .

[35]  V. Turaev,et al.  Modified 6j-Symbols and 3-Manifold Invariants , 2009, 0910.1624.

[36]  Representations of Lie superalgebras in prime characteristic II: The queer series , 2009 .

[37]  Weiqiang Wang,et al.  Representations of Lie superalgebras in prime characteristic I , 2008, 0808.0046.

[38]  Brian D. Boe,et al.  Complexity and Module Varieties for Classical Lie Superalgebras , 2009, 0905.2403.

[39]  A. Tsuchiya,et al.  The Triplet Vertex Operator Algebra W(p) and the Restricted Quantum Group at Root of Unity , 2009, 0902.4607.

[40]  Representations of Lie superalgebras in prime characteristic, III , 2009, 0910.2077.

[41]  V. Mazorchuk,et al.  Serre functors for Lie algebras and superalgebras , 2010, 1008.1166.

[42]  Nathan Geer,et al.  Generalized trace and modified dimension functions on ribbon categories , 2010, 1001.0985.

[43]  V. Turaev,et al.  Tetrahedral forms in monoidal categories and 3-manifold invariants , 2010, 1008.3103.

[44]  J. Kujawa,et al.  Modified Traces on Deligne's Category Rep(S_{t}) , 2011, 1103.2082.

[45]  V. Serganova On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra , 2011 .

[46]  On blocks of Deligne's category Re _ p ( S t ) , 2009, 0910.5695.

[47]  Nathan Geer,et al.  Traces on ideals in pivotal categories , 2011, 1103.1660.

[48]  The triplet vertex operator algebra $W(p)$ and the restricted quantum group $\bar{U}_q (sl_2)$ at $q = e^{\frac{\pi i}{p}}$ , 2011 .

[49]  Brian D. Boe,et al.  Complexity for modules over the classical Lie superalgebra $\Xmathfrak {gl}(m|n)$ , 2011, Compositio Mathematica.

[50]  Modified traces on Deligne’s category $\underline{\mathrm{Re}}\hspace{0.7pt}\mathrm{p} (S_{t})$ , 2012 .