Learning From Query-Answers
暂无分享,去创建一个
Wolfgang Gatterbauer | Niccolò Meneghetti | Oliver Kennedy | Wolfgang Gatterbauer | Oliver Kennedy | Niccolò Meneghetti
[1] Martin Theobald,et al. Learning Tuple Probabilities in Probabilistic Databases , 2014 .
[2] Christopher Ré,et al. MYSTIQ: a system for finding more answers by using probabilities , 2005, SIGMOD '05.
[3] David Poole,et al. Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..
[4] Matthew Richardson,et al. Markov logic networks , 2006, Machine Learning.
[5] Dan Suciu,et al. Approximate Lifted Inference with Probabilistic Databases , 2014, Proc. VLDB Endow..
[6] Dan Suciu,et al. Oblivious bounds on the probability of boolean functions , 2014, ACM Trans. Database Syst..
[7] Dan Suciu,et al. Reverse data management , 2011, Proc. VLDB Endow..
[8] Christoph Koch,et al. PIP: A database system for great and small expectations , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).
[9] Luc De Raedt,et al. Parameter Learning in Probabilistic Databases: A Least Squares Approach , 2008, ECML/PKDD.
[10] Vibhav Gogate,et al. Dissociation-Based Oblivious Bounds for Weighted Model Counting , 2018, UAI.
[11] Dan Olteanu,et al. MayBMS: a probabilistic database management system , 2009, SIGMOD Conference.
[12] Pushpa N. Rathie,et al. On the entropy of continuous probability distributions (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[13] R. Herbrich. Minimising the Kullback-Leibler Divergence , 2005 .
[14] Parag Agrawal,et al. Trio: a system for data, uncertainty, and lineage , 2006, VLDB.
[15] Luc De Raedt,et al. Learning the Parameters of Probabilistic Logic Programs from Interpretations , 2011, ECML/PKDD.
[16] Jian Li,et al. Sensitivity analysis and explanations for robust query evaluation in probabilistic databases , 2011, SIGMOD '11.
[17] Dan Olteanu,et al. Fast and Simple Relational Processing of Uncertain Data , 2007, 2008 IEEE 24th International Conference on Data Engineering.
[18] Floris Geerts,et al. A General Framework for Anytime Approximation in Probabilistic Databases , 2018, ArXiv.
[19] Peter J. Haas,et al. Simulation of database-valued markov chains using SimSQL , 2013, SIGMOD '13.
[20] Jennie Duggan,et al. Hephaestus: Data Reuse for Accelerating Scientific Discovery , 2015, CIDR.
[21] Johannes Gehrke,et al. Coordination through querying in the youtopia system , 2011, SIGMOD '11.
[22] Serge Abiteboul,et al. Foundations of Databases , 1994 .
[23] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[24] Richard M. Karp,et al. Monte-Carlo Approximation Algorithms for Enumeration Problems , 1989, J. Algorithms.
[25] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[26] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[27] Dan Suciu,et al. Management of probabilistic data: foundations and challenges , 2007, PODS '07.
[28] Susanne E. Hambrusch,et al. Orion 2.0: native support for uncertain data , 2008, SIGMOD Conference.
[29] Martin Theobald,et al. Querying and Learning in Probabilistic Databases , 2014, Reasoning Web.
[30] Jennifer Widom,et al. ULDBs: databases with uncertainty and lineage , 2006, VLDB.
[31] R. Okafor. Maximum likelihood estimation from incomplete data , 1987 .
[32] Wolfgang Gatterbauer,et al. Beta Probabilistic Databases: A Scalable Approach to Belief Updating and Parameter Learning , 2017, SIGMOD Conference.
[33] Val Tannen,et al. Provenance semirings , 2007, PODS.
[34] Lise Getoor,et al. PrDB: managing and exploiting rich correlations in probabilistic databases , 2009, The VLDB Journal.
[35] Dan Olteanu,et al. Approximate confidence computation in probabilistic databases , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).
[36] Dan Olteanu,et al. Anytime approximation in probabilistic databases , 2013, The VLDB Journal.
[37] Dan Suciu. Probabilistic Databases , 2018, Encyclopedia of Database Systems.
[38] Dan Olteanu,et al. Secondary-storage confidence computation for conjunctive queries with inequalities , 2009, SIGMOD Conference.
[39] Ying Yang,et al. Lenses: An On-Demand Approach to ETL , 2015, Proc. VLDB Endow..
[40] Udi Rotics,et al. Factoring and recognition of read-once functions using cographs and normality and the readability of functions associated with partial k-trees , 2006, Discret. Appl. Math..
[41] Luc De Raedt,et al. ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.
[42] Dan Suciu,et al. The dichotomy of probabilistic inference for unions of conjunctive queries , 2012, JACM.
[43] Dan Olteanu,et al. Using OBDDs for Efficient Query Evaluation on Probabilistic Databases , 2008, SUM.
[44] Norbert Fuhr,et al. A probabilistic relational algebra for the integration of information retrieval and database systems , 1997, TOIS.
[45] Dan Suciu,et al. Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.
[46] Dan Olteanu,et al. Conditioning probabilistic databases , 2008, Proc. VLDB Endow..
[47] Tova Milo,et al. Deriving probabilistic databases with inference ensembles , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[48] Val Tannen,et al. Provenance in ORCHESTRA , 2010, IEEE Data Eng. Bull..
[49] Peter J. Haas,et al. MCDB: a monte carlo approach to managing uncertain data , 2008, SIGMOD Conference.
[50] Ben Taskar,et al. Probabilistic Relational Models , 2014, Encyclopedia of Social Network Analysis and Mining.
[51] Andrew Hogue,et al. SPROUT2: a squared query engine for uncertain web data , 2011, SIGMOD '11.
[52] Kathryn B. Laskey. MEBN: A language for first-order Bayesian knowledge bases , 2008, Artif. Intell..
[53] Dina Q. Goldin,et al. Constraint Programming and Database Query Languages , 1994, TACS.
[54] Alon Y. Halevy,et al. Pay-as-you-go user feedback for dataspace systems , 2008, SIGMOD Conference.
[55] Sanjeev Khanna,et al. Why and Where: A Characterization of Data Provenance , 2001, ICDT.