Processing Low‐Oxide ZrB2 Ceramics with High Strength Using Boron Carbide and Spark Plasma Sintering

A phase diagram-assisted powder processing approach is shown to produce low-oxygen (0.06 wt%O) ZrB2 ceramics using minimal B4C additions (0.25 wt%) and spark plasma sintering. Scanning electron microscopy and scanning transmission electron microscopy with elemental spectroscopy are used to identify “trash collector” oxides. These “trash collector” oxides are composed of manufacturer metal powder impurities that form discreet oxide particles due to the absence of standard Zr–B oxides found in high oxygen samples. A preliminary Zr–B–C–O quaternary thermodynamic database developed as a part of this work was used to calculate the ZrO2–B4C pseudobinary phase diagram and ZrB2–ZrO2–B4C pseudoternary phase diagrams. We use the calculated equilibrium phase diagrams to characterize the oxide impurities and show the direct reaction path that allows for the formation of ZrB2 with an oxygen content of 0.06 wt%, fine grains (3.3 μm) and superior mechanical properties (flexural strength of 660 MPa).

[1]  Jun-ping Li,et al.  Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route , 2014 .

[2]  Erica L. Corral,et al.  Powder Processing Effects on the Rapid Low‐Temperature Densification of ZrB2–SiC Ultra‐High Temperature Ceramic Composites Using Spark Plasma Sintering , 2012 .

[3]  Y. Sakka,et al.  High-temperature bending strength, internal friction and stiffness of ZrB2–20 vol% SiC ceramics , 2012 .

[4]  J. Zou,et al.  Pressureless densification and mechanical properties of hafnium diboride doped with B4C: From solid state sintering to liquid phase sintering , 2010 .

[5]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C , 2015 .

[6]  J. Halloran,et al.  Zirconia Transport by Liquid Convection during Oxidation of Zirconium Diboride–Silicon Carbide , 2007 .

[7]  Guo‐Jun Zhang,et al.  New Borothermal Reduction Route to Synthesize Submicrometric ZrB2 Powders with Low Oxygen Content , 2011 .

[8]  J. Margrave,et al.  VAPORIZATION OF INORGANIC SUBSTANCES: B$sub 2$O$sub 3$, TeO$sub 2$, AND Mg$sub 3$N$sub 2$ , 1955 .

[9]  J. Vleugels,et al.  High temperature strength of hot pressed ZrB2–20 vol% SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes , 2013 .

[10]  S. Prochazka,et al.  Microstructural Coarsening During Sintering of Boron Carbide , 1989 .

[11]  S. M. Ivanov,et al.  Mechanical properties of ZrB2–SiC(ZrSi2) ceramics , 2010 .

[12]  Antonio Mario Locci,et al.  Simultaneous spark plasma synthesis and densification of TiC-TiB2 composites , 2006 .

[13]  M. Terauchi Electronic structure analyses of BN network materials using high energy‐resolution spectroscopy methods based on transmission electron microscopy , 2006, Microscopy research and technique.

[14]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air , 2013 .

[15]  Zi-kui Liu,et al.  Defects in boron carbide: First-principles calculations and CALPHAD modeling , 2012 .

[16]  L. Froyen,et al.  Impact of Thermal Diffusion on Densification During SPS , 2009 .

[17]  R. Wirth Water in minerals detectable by electron energy-loss spectroscopy EELS , 1997 .

[18]  Guo‐Jun Zhang,et al.  Reaction Processes and Characterization of ZrB2 Powder Prepared by Boro/Carbothermal Reduction of ZrO2 in Vacuum , 2009 .

[19]  K. Kimoto,et al.  Nitrogen Distribution and Chemical Bonding State Analyses in Oxynitride Film by Spatially Resolved Electron Energy Loss Spectroscopy (EELS) , 1998 .

[20]  J. I. Mueller,et al.  Solubility of Oxygen in ZrC , 1972 .

[21]  D. Shu,et al.  Electronic and bonding properties of TiB2 , 2007 .

[22]  Jiecai Han,et al.  Microstructure and properties of silicon carbide whisker reinforced zirconium diboride ultra-high temperature ceramics , 2009 .

[23]  Q. Zeng,et al.  Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study , 2010 .

[24]  J. Vleugels,et al.  Phase instability in ZrO2–TiB2 composites , 2007 .

[25]  G. Hilmas,et al.  Densification Behavior and Microstructure Evolution of Hot-pressed HfB2 , 2011 .

[26]  N. Ni,et al.  Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. , 2011, Ultramicroscopy.

[27]  A. Guillermet Analysis of thermochemical properties and phase stability in the zirconium-carbon system , 1995 .

[28]  H. S. Liu,et al.  Thermodynamic assessment of B–Zr and Si–Zr binary systems , 2009 .

[29]  G. Hilmas,et al.  Densification Behavior and Thermal Properties of Hafnium Diboride with the Addition of Boron Carbides , 2012 .

[30]  G. Hilmas,et al.  Pressureless Densification of Zirconium Diboride with Boron Carbide Additions , 2006 .

[31]  Jiecai Han,et al.  Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations , 2008 .

[32]  Jun-ping Li,et al.  Synthesis of ZrB2 nanoparticles by sol-gel method , 2011 .

[33]  G. Hilmas,et al.  Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects , 2008 .

[34]  Xiaohong Sun,et al.  Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol–gel processing route , 2014 .

[35]  Yutaka Kagawa,et al.  Spark Plasma Sintering of Zirconium Diborides , 2008 .

[36]  A. Maître,et al.  Synthesis of zirconium oxycarbide (ZrCxOy) powders: Influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties , 2011 .

[37]  K. Ray,et al.  Electrical and thermophysical properties of ZrB2 and HfB2 based composites , 2012 .

[38]  Erica L. Corral,et al.  Structural Influence on the Thermal Conversion of Self‐Catalyzed HfB2/ZrB2 Sol–Gel Precursors by Rapid Ultrasonication of Oxychloride Hydrates , 2014 .

[39]  S. S. Ordan’yan,et al.  Interaction in the system B4C-ZrB2 , 1988 .

[40]  D. Kalish,et al.  Strength, Fracture Mode, and Thermal Stress Resistance of HfB2 and ZrB2 , 1969 .

[41]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[42]  L. Gauckler,et al.  Thermodynamic modeling of the ZrO2–YO1.5 system , 2004 .

[43]  G. Hilmas,et al.  Effect of Starting Particle Size and Oxygen Content on Densification of ZrB2 , 2011 .

[44]  Y. Yan,et al.  Pressureless sintering of ZrB2–SiC ceramics: the effect of B4C content , 2009 .

[45]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[46]  K. Benthem,et al.  Time-dependent dielectric breakdown of surface oxides during electric-field-assisted sintering , 2014 .