Processing Low‐Oxide ZrB2 Ceramics with High Strength Using Boron Carbide and Spark Plasma Sintering
暂无分享,去创建一个
David Pham | Erica L. Corral | Krishna Muralidharan | James M. LeBeau | J. Lebeau | K. Muralidharan | V. Manga | J. H. Dycus | Venkateswara Rao Manga | David Pham | E. Corral
[1] Jun-ping Li,et al. Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route , 2014 .
[2] Erica L. Corral,et al. Powder Processing Effects on the Rapid Low‐Temperature Densification of ZrB2–SiC Ultra‐High Temperature Ceramic Composites Using Spark Plasma Sintering , 2012 .
[3] Y. Sakka,et al. High-temperature bending strength, internal friction and stiffness of ZrB2–20 vol% SiC ceramics , 2012 .
[4] J. Zou,et al. Pressureless densification and mechanical properties of hafnium diboride doped with B4C: From solid state sintering to liquid phase sintering , 2010 .
[5] G. Hilmas,et al. Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C , 2015 .
[6] J. Halloran,et al. Zirconia Transport by Liquid Convection during Oxidation of Zirconium Diboride–Silicon Carbide , 2007 .
[7] Guo‐Jun Zhang,et al. New Borothermal Reduction Route to Synthesize Submicrometric ZrB2 Powders with Low Oxygen Content , 2011 .
[8] J. Margrave,et al. VAPORIZATION OF INORGANIC SUBSTANCES: B$sub 2$O$sub 3$, TeO$sub 2$, AND Mg$sub 3$N$sub 2$ , 1955 .
[9] J. Vleugels,et al. High temperature strength of hot pressed ZrB2–20 vol% SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes , 2013 .
[10] S. Prochazka,et al. Microstructural Coarsening During Sintering of Boron Carbide , 1989 .
[11] S. M. Ivanov,et al. Mechanical properties of ZrB2–SiC(ZrSi2) ceramics , 2010 .
[12] Antonio Mario Locci,et al. Simultaneous spark plasma synthesis and densification of TiC-TiB2 composites , 2006 .
[13] M. Terauchi. Electronic structure analyses of BN network materials using high energy‐resolution spectroscopy methods based on transmission electron microscopy , 2006, Microscopy research and technique.
[14] G. Hilmas,et al. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air , 2013 .
[15] Zi-kui Liu,et al. Defects in boron carbide: First-principles calculations and CALPHAD modeling , 2012 .
[16] L. Froyen,et al. Impact of Thermal Diffusion on Densification During SPS , 2009 .
[17] R. Wirth. Water in minerals detectable by electron energy-loss spectroscopy EELS , 1997 .
[18] Guo‐Jun Zhang,et al. Reaction Processes and Characterization of ZrB2 Powder Prepared by Boro/Carbothermal Reduction of ZrO2 in Vacuum , 2009 .
[19] K. Kimoto,et al. Nitrogen Distribution and Chemical Bonding State Analyses in Oxynitride Film by Spatially Resolved Electron Energy Loss Spectroscopy (EELS) , 1998 .
[20] J. I. Mueller,et al. Solubility of Oxygen in ZrC , 1972 .
[21] D. Shu,et al. Electronic and bonding properties of TiB2 , 2007 .
[22] Jiecai Han,et al. Microstructure and properties of silicon carbide whisker reinforced zirconium diboride ultra-high temperature ceramics , 2009 .
[23] Q. Zeng,et al. Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study , 2010 .
[24] J. Vleugels,et al. Phase instability in ZrO2–TiB2 composites , 2007 .
[25] G. Hilmas,et al. Densification Behavior and Microstructure Evolution of Hot-pressed HfB2 , 2011 .
[26] N. Ni,et al. Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. , 2011, Ultramicroscopy.
[27] A. Guillermet. Analysis of thermochemical properties and phase stability in the zirconium-carbon system , 1995 .
[28] H. S. Liu,et al. Thermodynamic assessment of B–Zr and Si–Zr binary systems , 2009 .
[29] G. Hilmas,et al. Densification Behavior and Thermal Properties of Hafnium Diboride with the Addition of Boron Carbides , 2012 .
[30] G. Hilmas,et al. Pressureless Densification of Zirconium Diboride with Boron Carbide Additions , 2006 .
[31] Jiecai Han,et al. Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations , 2008 .
[32] Jun-ping Li,et al. Synthesis of ZrB2 nanoparticles by sol-gel method , 2011 .
[33] G. Hilmas,et al. Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects , 2008 .
[34] Xiaohong Sun,et al. Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol–gel processing route , 2014 .
[35] Yutaka Kagawa,et al. Spark Plasma Sintering of Zirconium Diborides , 2008 .
[36] A. Maître,et al. Synthesis of zirconium oxycarbide (ZrCxOy) powders: Influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties , 2011 .
[37] K. Ray,et al. Electrical and thermophysical properties of ZrB2 and HfB2 based composites , 2012 .
[38] Erica L. Corral,et al. Structural Influence on the Thermal Conversion of Self‐Catalyzed HfB2/ZrB2 Sol–Gel Precursors by Rapid Ultrasonication of Oxychloride Hydrates , 2014 .
[39] S. S. Ordan’yan,et al. Interaction in the system B4C-ZrB2 , 1988 .
[40] D. Kalish,et al. Strength, Fracture Mode, and Thermal Stress Resistance of HfB2 and ZrB2 , 1969 .
[41] S. Guo,et al. Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .
[42] L. Gauckler,et al. Thermodynamic modeling of the ZrO2–YO1.5 system , 2004 .
[43] G. Hilmas,et al. Effect of Starting Particle Size and Oxygen Content on Densification of ZrB2 , 2011 .
[44] Y. Yan,et al. Pressureless sintering of ZrB2–SiC ceramics: the effect of B4C content , 2009 .
[45] Donald T. Ellerby,et al. High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .
[46] K. Benthem,et al. Time-dependent dielectric breakdown of surface oxides during electric-field-assisted sintering , 2014 .