The effect of the signalling scheme on the robustness of pattern formation in development

Pattern formation in development is a complex process which involves spatially distributed signals called morphogens that influence gene expression and thus the phenotypic identity of cells. Usually different cell types are spatially segregated, and the boundary between them may be determined by a threshold value of some state variable. The question arises as to how sensitive the location of such a boundary is to variations in properties, such as parameter values, that characterize the system. Here, we analyse both deterministic and stochastic reaction-diffusion models of pattern formation with a view towards understanding how the signalling scheme used for patterning affects the variability of boundary determination between cell types in a developing tissue.

[1]  David M. Umulis,et al.  Robust, bistable patterning of the dorsal surface of the Drosophila embryo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Magnaldo SHH (Sonic hedgehog) , 2011 .

[3]  David M. Umulis,et al.  Analysis of dynamic morphogen scale invariance , 2009, Journal of The Royal Society Interface.

[4]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[5]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[6]  M. Gonzalez-Gaitan,et al.  Gradient formation of the TGF-beta homolog Dpp. , 2000, Cell.

[7]  Jane M. Oppenheimer,et al.  Essays in the History of Embryology and Biology , 1967 .

[8]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[9]  Robert Dillon,et al.  Short- and long-range effects of Sonic hedgehog in limb development , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  L Wolpert,et al.  Mechanisms for positional signalling by morphogen transport: a theoretical study. , 1998, Journal of theoretical biology.

[11]  Qing Nie,et al.  Do morphogen gradients arise by diffusion? , 2002, Developmental cell.

[12]  David F. Anderson,et al.  Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks , 2008, Bulletin of mathematical biology.

[13]  S. Bergmann,et al.  Precision and scaling in morphogen gradient read-out , 2010, Molecular systems biology.

[14]  T. Bisseling,et al.  Model for the robust establishment of precise proportions in the early Drosophila embryo. , 2004, Journal of theoretical biology.

[15]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[16]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[17]  H. Kuthan Self-organisation and orderly processes by individual protein complexes in the bacterial cell. , 2001, Progress in biophysics and molecular biology.

[18]  S. Gilbert Principles of Development: Genes and Development , 2000 .

[19]  Mathieu Coppey,et al.  Modelling the Bicoid gradient , 2010, Development.

[20]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[21]  Hans G. Othmer,et al.  Synchronized and Differentiated Modes of Cellular Dynamics , 1980 .

[22]  Marcos Nahmad,et al.  Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc , 2009, PLoS biology.

[23]  C. M. Child Patterns and problems of development [by] C.M. Child ... , 1941 .

[24]  L. Raftery,et al.  Gradients and thresholds: BMP response gradients unveiled in Drosophila embryos. , 2003, Trends in genetics : TIG.

[25]  C. M. Child Patterns and Problems of Development , 2013 .

[26]  C. Tickle,et al.  A positive feedback loop coordinates growth and patterning in the vertebrate limb , 1994, Nature.

[27]  P. R. ten Wolde,et al.  Shaping a morphogen gradient for positional precision. , 2010, Biophysical journal.

[28]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[29]  H. Meinhardt Models of biological pattern formation , 1982 .

[30]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[31]  S. Bergmann,et al.  Pre-Steady-State Decoding of the Bicoid Morphogen Gradient , 2007, PLoS biology.

[32]  Y. Kalaidzidis,et al.  Kinetics of Morphogen Gradient Formation , 2007, Science.

[33]  H. Othmer,et al.  A stochastic analysis of first-order reaction networks , 2005, Bulletin of mathematical biology.

[34]  Alexander Spirov,et al.  Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient , 2009, Development.

[35]  Thomas Gregor,et al.  Shape and function of the Bicoid morphogen gradient in dipteran species with different sized embryos. , 2008, Developmental biology.

[36]  O. Shimmi,et al.  Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo , 2003, Development.

[37]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[38]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[39]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[40]  H G Othmer,et al.  A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. , 1999, Journal of theoretical biology.

[41]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[42]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[43]  Robert H Singer,et al.  Gene expression and the myth of the average cell. , 2003, Trends in cell biology.

[44]  D. Koshland,et al.  Non-genetic individuality: chance in the single cell , 1976, Nature.

[45]  H G Othmer,et al.  Scale-invariance in reaction-diffusion models of spatial pattern formation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[47]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[48]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[49]  A. Kicheva,et al.  Temporal dynamics of patterning by morphogen gradients. , 2009, Current opinion in genetics & development.

[50]  Eduardo D. Sontag,et al.  Adaptation and regulation with signal detection implies internal model , 2003, Syst. Control. Lett..

[51]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[52]  M. Freeman Feedback control of intercellular signalling in development , 2000, Nature.

[53]  Marcos González-Gaitán,et al.  Gradient Formation of the TGF-β Homolog Dpp , 2000, Cell.

[54]  David M. Umulis,et al.  The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. , 2009, Mathematical modelling of natural phenomena.