Feature extraction using orthogonal discriminant local tangent space alignment

A novel algorithm called orthogonal discriminant local tangent space alignment (O-DLTSA) is proposed for supervised feature extraction. Derived from local tangent space alignment (LTSA), O-DLTSA not only inherits the advantages of LTSA which uses local tangent space as a representation of the local geometry so as to preserve the local structure, but also makes full use of class information and orthogonal subspace to improve discriminant power. The experimental results of applying O-DLTSA to standard face databases demonstrate the effectiveness of the proposed method.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  Feiping Nie,et al.  Nonlinear Dimensionality Reduction with Local Spline Embedding , 2009, IEEE Transactions on Knowledge and Data Engineering.

[3]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[4]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[5]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[6]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[7]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  David G. Stork,et al.  Pattern Classification , 1973 .

[9]  Hongyu Li,et al.  Supervised Learning on Local Tangent Space , 2005, ISNN.

[10]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[11]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Kun Zhou,et al.  Locality Sensitive Discriminant Analysis , 2007, IJCAI.

[13]  Daoqiang Zhang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[14]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[15]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Hongbin Zha,et al.  Riemannian Manifold Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[19]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Deli Zhao,et al.  Linear local tangent space alignment and application to face recognition , 2007, Neurocomputing.

[21]  L. Duchene,et al.  An Optimal Transformation for Discriminant and Principal Component Analysis , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[23]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[24]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[25]  Anil K. Jain,et al.  Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[27]  Hongbin Zha,et al.  Riemannian Manifold Learning for Nonlinear Dimensionality Reduction , 2006, ECCV.

[28]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[29]  Feiping Nie,et al.  Spline Embedding for Nonlinear Dimensionality Reduction , 2006, ECML.

[30]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[31]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[32]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.