Sensor network localization, euclidean distance matrix completions, and graph realization
暂无分享,去创建一个
[1] Anthony Man-Cho So,et al. Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.
[2] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[3] R. Farebrother. Three theorems with applications to euclidean distance matrices , 1987 .
[4] Wei-Min Liu,et al. The cone of distance matrices , 1991 .
[5] R. Vanderbei,et al. The Gauss-Newton direction in semidefinite programming , 2001 .
[6] M. Fréchet. Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .
[7] H. Wolkowicz,et al. Robust Semidenite Programming Approaches for Sensor Network Localization with Anchors , 2006 .
[8] W. Torgerson. Multidimensional scaling: I. Theory and method , 1952 .
[9] Jerry Eriksson,et al. Local results for the Gauss-Newton method on constrained rank-deficient nonlinear least squares , 2003, Math. Comput..
[10] Gordon M. Crippen,et al. Distance Geometry and Molecular Conformation , 1988 .
[11] J. Gower. Properties of Euclidean and non-Euclidean distance matrices , 1985 .
[12] Levent Tunçel,et al. Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..
[13] Yinyu Ye,et al. Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.
[14] Y. Ye,et al. A Distributed Method for Solving Semidefinite Programs Arising from Ad Hoc Wireless Sensor Network Localization , 2006 .
[15] Yinyu Ye,et al. Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.
[16] Henry Wolkowicz,et al. Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..
[17] Charles R. Johnson,et al. The Euclidian Distance Matrix Completion Problem , 1995, SIAM J. Matrix Anal. Appl..
[18] Stephen P. Boyd,et al. Further Relaxations of the Semidefinite Programming Approach to Sensor Network Localization , 2008, SIAM J. Optim..
[19] Holly Hui Jin,et al. Scalable sensor localization algorithms for wireless sensor networks , 2005 .
[20] Stephen P. Boyd,et al. Further Relaxations of the SDP Approach to Sensor Network Localization , 2007 .
[21] H. Wolkowicz,et al. Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming , 2005 .
[22] M. Laurent. A tour d’horizon on positive semidefinite and Euclidean distance matrix completion problems , 1998 .
[23] J. Borwein,et al. Facial reduction for a cone-convex programming problem , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[24] Kim-Chuan Toh,et al. Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.
[25] Paul Tseng,et al. Second-Order Cone Programming Relaxation of Sensor Network Localization , 2007, SIAM J. Optim..
[26] Anand Srivastav,et al. Finding Dense Subgraphs with Semidefinite Programming , 1998, APPROX.
[27] Paul Tseng,et al. Approximation Bounds for Quadratic Optimization with Homogeneous Quadratic Constraints , 2007, SIAM J. Optim..
[28] Anthony Man-Cho So,et al. A Unified Theorem on Sdp Rank Reduction , 2008, Math. Oper. Res..
[29] Charles R. Johnson,et al. Connections between the real positive semidefinite and distance matrix completion problems , 1995 .
[30] Dachuan Xu,et al. Improved Approximation Algorithms for MAX $$\frac{n}{{\text{2}}}$$ -DIRECTED-BISECTION and MAX $$\frac{n}{{\text{2}}}$$ -DENSE-SUBGRAPH , 2003, J. Glob. Optim..
[31] Levent Tunçel,et al. Invariance and efficiency of convex representations , 2007, Math. Program..