Corners Always Scatter

We study time harmonic scattering for the Helmholtz equation in $${\mathbb{R}^n}$$Rn. We show that certain penetrable scatterers with rectangular corners scatter every incident wave nontrivially. Even though these scatterers have interior transmission eigenvalues, the relative scattering (a.k.a. far field) operator has a trivial kernel and cokernel at every real wavenumber.

[1]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[2]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[3]  H. Triebel Theory Of Function Spaces , 1983 .

[4]  Joseph B. Keller,et al.  ASYMPTOTIC METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS: THE REDUCED WAVE EQUATION AND MAXWELL'S EQUATION , 1995 .

[5]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[6]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[7]  Shmuel Agmon,et al.  Asymptotic properties of solutions of differential equations with simple characteristics , 1976 .

[8]  John Sylvester,et al.  Transmission Eigenvalues , 2008, SIAM J. Math. Anal..

[9]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[10]  Petri Ola,et al.  Transmission Eigenvalues for Operators with Constant Coefficients , 2010, SIAM J. Math. Anal..

[11]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[12]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[13]  B. L. Waerden,et al.  Zur algebraischen Geometrie. IX , 1937 .

[14]  D. Colton,et al.  The interior transmission problem , 2007 .

[15]  D. Colton,et al.  THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC WAVES IN AN INHOMOGENEOUS MEDIUM , 1988 .

[16]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[17]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933 .

[18]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[19]  A. Sommerfeld,et al.  Lectures on theoretical physics , 1950 .

[20]  B. L. Waerden,et al.  Zur algebraischen Geometrie. IX , 1937 .

[21]  K. W. Meissner,et al.  Optics. Lectures on Theoretical Physics, Vol. IV , 1955 .

[22]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[23]  B. L. Waerden Zur algebraischen Geometrie , 1937 .