Issues in the Development of Global Optimization Algorithms for Bilevel Programs with a Nonconvex Inner Program

The co-operative formulation of a nonlinear bilevel program involving nonconvex functions is considered and two equivalent reformulations to simpler programs are presented. It is shown that previous literature proposals for the global solution of such programs are not generally valid for nonconvex inner programs and several consequences of nonconvexity in the inner program are identified. In particular, issues with the computation of lower and upper bounds as well as with the choice of branching variables in a branch-andbound framework are analyzed. This analysis lays the foundation for the development of rigorous algorithms and some algorithmic expectations are established.

[1]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[2]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[3]  Arthur W. Westerberg,et al.  Optimization for design problems having more than one objective , 1983 .

[4]  Jonathan F. Bard An Algorithm for Solving the General Bilevel Programming Problem , 1983, Math. Oper. Res..

[5]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[6]  C. Floudas,et al.  Active constraint strategy for flexibility analysis in chemical processes , 1987 .

[7]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[8]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design , 1990 .

[9]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[10]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[11]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[12]  S. Dempe First-Order Necessary Optimality Conditions for General Bilevel Programming Problems , 1997 .

[13]  S. Scholtes,et al.  Nondifferentiable and two-level mathematical programming , 1997 .

[14]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[15]  Mahyar A. Amouzegar A global optimization method for nonlinear bilevel programming problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[17]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[18]  Oliver Stein,et al.  On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..

[19]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[20]  Leo Liberti,et al.  Convex Envelopes of Monomials of Odd Degree , 2003, J. Glob. Optim..

[21]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[22]  Oliver Stein,et al.  Continuous reformulations of discrete-continuous optimization problems , 2004, Comput. Chem. Eng..

[23]  Paul I. Barton,et al.  Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..

[24]  Paul I. Barton,et al.  Global solution of semi-infinite programs , 2004 .

[25]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer bilevel programming problems , 2005, Comput. Manag. Sci..

[26]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications) , 2006 .

[27]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..