Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers

[1]  George F. Jenks,et al.  ERROR ON CHOROPLETHIC MAPS: DEFINITION, MEASUREMENT, REDUCTION , 1971 .

[2]  James P. Egan,et al.  Signal detection theory and ROC analysis , 1975 .

[3]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[4]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[5]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[6]  Ron Kohavi,et al.  Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[7]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[8]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[9]  Yoav Freund,et al.  The Alternating Decision Tree Learning Algorithm , 1999, ICML.

[10]  J. Agee,et al.  FIRE FREQUENCY IN THE INTERIOR COLUMBIA RIVER BASIN: BUILDING REGIONAL MODELS FROM FIRE HISTORY DATA , 2000 .

[11]  F. Hoehler Bias and prevalence effects on kappa viewed in terms of sensitivity and specificity. , 2000, Journal of clinical epidemiology.

[12]  M. Flannigan,et al.  Climate change and forest fires. , 2000, The Science of the total environment.

[13]  João Gama,et al.  Functional Trees , 2001, Machine Learning.

[14]  Harry Zhang,et al.  Naive Bayesian Classifiers for Ranking , 2004, ECML.

[15]  Yang Liu,et al.  An introduction to decision tree modeling , 2004 .

[16]  Eibe Frank,et al.  Logistic Model Trees , 2003, Machine Learning.

[17]  Giuseppe Amatulli,et al.  Assessing long‐term fire risk at local scale by means of decision tree technique , 2006 .

[18]  Han Liang,et al.  Learning Naïve Bayes Tree for Conditional Probability Estimation , 2006, Canadian Conference on AI.

[19]  David McLean,et al.  Logistic Model Tree Extraction From Artificial Neural Networks , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  F. J. Lozano,et al.  A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region , 2008 .

[21]  Selwyn Piramuthu,et al.  Input data for decision trees , 2008, Expert Syst. Appl..

[22]  M. Stambaugh,et al.  Predicting spatio-temporal variability in fire return intervals using a topographic roughness index , 2008 .

[23]  P. Reichenbach,et al.  Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium , 2009 .

[24]  F. Moreira,et al.  Modeling and mapping wildfire ignition risk in Portugal , 2009 .

[25]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[26]  Jos Van Orshoven,et al.  Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA) , 2011, Environ. Model. Softw..

[27]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[28]  Richard Valliant,et al.  Variance inflation factors in the analysis of complex survey data , 2012 .

[29]  J. Pereira,et al.  Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest , 2012 .

[30]  K. Solaimani,et al.  Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques , 2012, Natural Hazards.

[31]  Á. Felicísimo,et al.  Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study , 2013, Landslides.

[32]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[33]  Lia Duarte,et al.  Forest fire risk maps: a GIS open source application – a case study in Norwest of Portugal , 2013, Int. J. Geogr. Inf. Sci..

[34]  F. Mohammadi,et al.  Forest Fire Risk Zone Modeling Using Logistic Regression and GIS: An Iranian Case Study , 2013, Small-scale Forestry.

[35]  Francisco Martínez-Álvarez,et al.  Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula , 2013, Knowl. Based Syst..

[36]  H. B. Heidarlou,et al.  FOREST FIRE RISK MAPPING USING ANALYTICAL HIERARCHY PROCESS TECHNIQUE AND FREQUENCY RATIO METHOD (CASE STUDY: SARDASHT FORESTS, NW IRAN) , 2014 .

[37]  Zohre Sadat Pourtaghi,et al.  Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran , 2015, Environmental Earth Sciences.

[38]  J. Pereira,et al.  Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression , 2014 .

[39]  Bryan C. Pijanowski,et al.  Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world , 2014, Environ. Model. Softw..

[40]  Juan de la Riva,et al.  An insight into machine-learning algorithms to model human-caused wildfire occurrence , 2014, Environ. Model. Softw..

[41]  O. Sass,et al.  Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests , 2014 .

[42]  Mario Mhawej,et al.  Wildfire Likelihood’s Elements: A Literature Review , 2015 .

[43]  A. Jaafari,et al.  Planning road networks in landslide-prone areas: A case study from the northern forests of Iran , 2015 .

[44]  Biswajeet Pradhan,et al.  Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree , 2016, Landslides.

[45]  Yongsheng Du,et al.  Modeling Forest Lightning Fire Occurrence in the Daxinganling Mountains of Northeastern China with MAXENT , 2015 .

[46]  Seyed Amir Naghibi,et al.  GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran , 2015, Environmental Monitoring and Assessment.

[47]  B. Pham,et al.  Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods , 2017, Theoretical and Applied Climatology.

[48]  J. Bedia,et al.  Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change , 2015 .

[49]  K. Solaimani,et al.  Modelling static fire hazard in a semi-arid region using frequency analysis , 2015 .

[50]  María José Lombardía,et al.  Prediction of forest fires occurrences with area-level Poisson mixed models. , 2015, Journal of environmental management.

[51]  Saeedeh Eskandari,et al.  Fire danger assessment in Iran based on geospatial information , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[52]  B. Pradhan,et al.  Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines , 2015 .

[53]  Fermín J. Alcasena,et al.  Evaluating fire modelling systems in recent wildfires of the Golestan National Park, Iran , 2016 .

[54]  Laura Garach,et al.  Bayes classifiers for imbalanced traffic accidents datasets. , 2016, Accident; analysis and prevention.

[55]  Dieu Tien Bui,et al.  Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression , 2016, Remote. Sens..

[56]  Jinghu Pan,et al.  Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China , 2016, Natural Hazards.

[57]  Futao Guo,et al.  What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests , 2016 .

[58]  Biswajeet Pradhan,et al.  A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India) , 2016, Environ. Model. Softw..

[59]  Zohre Sadat Pourtaghi,et al.  Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques , 2016 .

[60]  H. Pourghasemi GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models , 2016 .

[61]  Joaquín B. Ordieres Meré,et al.  Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques , 2016 .

[62]  D. Bui,et al.  Shallow landslide susceptibility assessment using a novel hybrid intelligence approach , 2017, Environmental Earth Sciences.

[63]  K. Solaimani,et al.  Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran , 2017, Environmental Earth Sciences.

[64]  Abolfazl Jaafari,et al.  A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran , 2017, Ecol. Informatics.

[65]  Biswajeet Pradhan,et al.  A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area , 2017 .

[66]  S. Eskandari,et al.  Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran , 2017 .

[67]  M. Mhawej,et al.  A novel method to identify likely causes of wildfire , 2017 .

[68]  A. Jaafari,et al.  Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS , 2018, International Journal of Environmental Science and Technology.