Recovering distance information in spectral domain interferometry

This work evaluates the performance of the Complex Master Slave (CMS) method, that processes the spectra at the interferometer output of a spectral domain interferometry device without involving Fourier transforms (FT) after data acquisition. Reliability and performance of CMS are compared side by side with the conventional method based on FT, phase calibration with dispersion compensation (PCDC). We demonstrate that both methods provide similar results in terms of resolution and sensitivity drop-off. The mathematical operations required to produce CMS results are highly parallelizable, allowing real-time, simultaneous delivery of data from several points of different optical path differences in the interferometer, not possible via PCDC.

[1]  Adrian Bradu,et al.  Complex master slave interferometry. , 2016, Optics express.

[2]  Kohji Ohbayashi,et al.  Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second , 2012, Biomedical optics express.

[3]  Ole Bang,et al.  Two optical coherence tomography systems detect topical gold nanoshells in hair follicles, sweat ducts and measure epidermis , 2018, Journal of biophotonics.

[4]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[5]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[6]  Kang Zhang,et al.  Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT , 2010, Optics express.

[7]  Guillermo J. Tearney,et al.  Estimation and compensation of dispersion for a high-resolution optical coherence tomography system , 2018 .

[8]  J. Fujimoto,et al.  Wideband Electrically Pumped 1050-nm MEMS-Tunable VCSEL for Ophthalmic Imaging , 2015, Journal of Lightwave Technology.

[9]  Adrian Bradu,et al.  Master/slave interferometry - ideal tool for coherence revival swept source optical coherence tomography. , 2016, Biomedical optics express.

[10]  Zhilin Hu,et al.  Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. , 2007, Optics letters.

[11]  Adrian Gh. Podoleanu,et al.  Direct electronic linearization for camera based spectral domain optical coherence tomography , 2013, Photonics West - Biomedical Optics.

[12]  O. Bang,et al.  All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations , 2018, Scientific Reports.

[13]  H A Gebbie,et al.  Two-beam interferometric spectroscopy , 1966 .

[14]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[15]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[16]  A. Podoleanu,et al.  Unique interpretation of Talbot Bands and Fourier domain white light interferometry. , 2007, Optics express.

[17]  J. Fujimoto,et al.  Cubic meter volume optical coherence tomography. , 2016, Optica.

[18]  E. Pascale,et al.  Demonstration of spectral and spatial interferometry at THz frequencies. , 2012, Applied optics.

[19]  Panomsak Meemon,et al.  Gabor-based fusion technique for Optical Coherence Microscopy. , 2010, Optics express.

[20]  Kai Wang,et al.  Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. , 2009, Optics express.

[21]  Ping Xue,et al.  Optical computing for optical coherence tomography , 2016, Scientific reports.

[22]  Sébastien Vergnole,et al.  Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. , 2010, Optics express.

[23]  A. Reichold,et al.  Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells. , 2014, Optics express.

[24]  David D. Nolte,et al.  Optical Interferometry for Biology and Medicine , 2011 .

[25]  Martin Villiger,et al.  Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography. , 2018, Optics express.

[26]  V. Srinivasan,et al.  Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast , 2012, Optics express.

[27]  Adrian Bradu,et al.  Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit. , 2010, Journal of biomedical optics.

[28]  Adrian Bradu,et al.  Gabor fusion master slave optical coherence tomography. , 2017, Biomedical optics express.

[29]  Amy L. Oldenburg,et al.  Digital dispersion compensation for ultrabroad-bandwidth single-camera spectral-domain polarization-sensitive OCT , 2011, BiOS.

[30]  Ole Bang,et al.  Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography. , 2017, Optics letters.

[31]  Adrian Bradu,et al.  Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography. , 2013, Optics express.

[32]  Y. Yasuno,et al.  Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. , 2008, Optics express.

[33]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.