Engineering optoelectronically active macromolecules for polymer-based photovoltaic and thermoelectric devices

The design and synthesis of semiconducting and conducting macromolecules has led to recent marked increases in the performance of polymer-based sustainable energy conversion devices. Specifically, the design of semiconducting copolymers has allowed for the fabrication of solution-deposited organic photovoltaic (OPV) devices with power conversion efficiencies approaching 11% to be realized on the laboratory scale. Furthermore, polymer-based thermoelectric (TE) devices with figure of merit (ZT) values of greater than 0.4 have been realized due to the refinement of conducting polymers and conducting polymer–inorganic nanoparticle composites. Here, we describe the macromolecular design strategies that have been implemented to achieve these impressive results, and we suggest future routes of investigation that could allow for the discovery of even higher performance materials and devices.

[1]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[2]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[3]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[4]  D. Emin,et al.  Thermoelectric properties of conducting polymers : The case of poly(3-hexylthiophene) , 2010 .

[5]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[6]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[7]  Feng Liu,et al.  On the morphology of polymer‐based photovoltaics , 2012 .

[8]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[9]  Itaru Osaka,et al.  Advances in molecular design and synthesis of regioregular polythiophenes. , 2008, Accounts of chemical research.

[10]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[11]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[12]  Wei You,et al.  Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. , 2011, Angewandte Chemie.

[13]  Seth B. Darling,et al.  Optoelectronics using block copolymers , 2010 .

[14]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[15]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[16]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[17]  X. Crispin,et al.  Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. , 2012, Journal of the American Chemical Society.

[18]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[19]  Jizheng Wang,et al.  Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications , 2012 .

[20]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[21]  Luping Yu,et al.  Are we there yet? Design of better conjugated polymers for polymer solar cells , 2011 .

[22]  Jason D. Myers,et al.  Organic Semiconductors and their Applications in Photovoltaic Devices , 2012 .

[23]  Trisha L. Andrew,et al.  An air-stable low-bandgap n-type organic polymer semiconductor exhibiting selective solubility in perfluorinated solvents. , 2012, Angewandte Chemie.

[24]  Frederik C. Krebs,et al.  Business, market and intellectual property analysis of polymer solar cells , 2010 .

[25]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[26]  Iain McCulloch,et al.  Progress and Challenges in Commercialization of Organic Electronics , 2008 .

[27]  Assunta Marrocchi,et al.  Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells , 2012 .

[28]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[29]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[30]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[31]  Yang Yang,et al.  Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. , 2012, Journal of the American Chemical Society.

[32]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[33]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[34]  E. Gomez,et al.  Engineering the organic semiconductor-electrode interface in polymer solar cells , 2010 .

[35]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[36]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[37]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[38]  D. Seferos,et al.  Atomistic band gap engineering in donor-acceptor polymers. , 2012, Journal of the American Chemical Society.

[39]  Ben Minnaert,et al.  Efficiency potential of organic bulk heterojunction solar cells , 2007 .

[40]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[41]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[42]  H. Katz,et al.  Organic transistors in the new decade: Toward n-channel, printed, and stabilized devices , 2012 .

[43]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[44]  Philip S. Casey,et al.  Research progress on polymer–inorganic thermoelectric nanocomposite materials , 2012 .

[45]  Jean-Luc Brédas,et al.  Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors , 2004 .

[46]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[47]  Zhigang Shuai,et al.  Evaluation of Charge Mobility in Organic Materials: From Localized to Delocalized Descriptions at a First‐Principles Level , 2011, Advanced materials.

[48]  A. Facchetti,et al.  Semiconducting Polymeric Materials , 2008 .

[49]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[50]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[51]  M. Stefan,et al.  Benzo[1,2-b:4,5-b']dithiophene building block for the synthesis of semiconducting polymers. , 2012, Macromolecular rapid communications.

[52]  Kevin C. See,et al.  Effect of Interfacial Properties on Polymer–Nanocrystal Thermoelectric Transport , 2013, Advanced materials.

[53]  Yang Yang,et al.  Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene , 2008 .

[54]  Martin Brinkmann,et al.  Structure and morphology control in thin films of regioregular poly(3‐hexylthiophene) , 2011 .

[55]  Christoph J. Brabec,et al.  Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies , 2014 .

[56]  Franky So,et al.  Metal oxides for interface engineering in polymer solar cells , 2012 .

[57]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[58]  S. Darling,et al.  Morphology characterization in organic and hybrid solar cells , 2012 .

[59]  S. Fabiano,et al.  From Monolayer to Multilayer N‐Channel Polymeric Field‐Effect Transistors with Precise Conformational Order , 2012, Advanced materials.

[60]  X. Crispin,et al.  Towards polymer-based organic thermoelectric generators , 2012 .