Atomic-scale electron microscopy at ambient pressure.

We demonstrate a novel nanoreactor for performing atomic-resolution environmental transmission electron microscopy (ETEM) of nanostructured materials during exposure to gases at ambient pressures and elevated temperatures. The nanoreactor is a microelectromechanical system (MEMS) and is functionalized with a micrometer-sized gas-flow channel, electron-transparent windows and a heating device. It fits into the tip of a dedicated sample holder that can be used in a normal CM microscope of Philips/FEI Company. The nanoreactor performance was demonstrated by ETEM imaging of a Cu/ZnO catalyst for methanol synthesis during exposure to hydrogen. Specifically, the nanoreactor facilitated the direct observation of Cu nanocrystal growth and mobility on a sub-second time scale during heating to 500 degrees C and exposure to 1.2 bar of H(2). For the same gas reaction environment, ETEM images show atomic lattice fringes in the Cu nanocrystals with spacing of 0.18 nm, attesting the spatial resolution limit of the system. The nanoreactor concept opens up new possibilities for in situ studies of nanomaterials and the ways they interact with their ambient working environment in diverse areas, such as heterogeneous catalysis, electrochemistry, nanofabrication, materials science and biology.

[1]  F. Ross,et al.  Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface , 2003, Nature materials.

[2]  Klavs F. Jensen,et al.  A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing , 2003 .

[3]  M. Hochberg,et al.  Micro-Machined Electron Transparent Alumina Vacuum Windows , 2000 .

[4]  M. Elwenspoek,et al.  Deflection and maximum load of microfiltration membrane sieves made with silicon micromachining , 1997 .

[5]  E. Butler,et al.  Dynamic experiments in the electron microscope , 1981 .

[6]  G. Kino,et al.  Atmospheric scanning electron microscopy using silicon nitride thin film windows , 1991 .

[7]  R. E. Oosterbroek,et al.  Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane , 2005 .

[8]  G. Parkinson High resolution, in-situ controlled atmosphere transmission electron microscopy (CATEM) of heterogeneous catalysts , 1989 .

[9]  A. Hierlemann,et al.  Microfabrication techniques for chemical/biosensors , 2003, Proc. IEEE.

[10]  S. Giorgio,et al.  Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. , 2006, Ultramicroscopy.

[11]  Bernhard Schaffer,et al.  Automated spatial drift correction for EFTEM image series. , 2004, Ultramicroscopy.

[12]  Jérôme Courbat,et al.  Failure analysis of micro-heating elements suspended on thin membranes , 2005, Microelectron. Reliab..

[13]  L. Reimer Electron Energy‐Loss Spectroscopy in the Electron Microscope , 1997 .

[14]  Danick Briand,et al.  Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors , 2000 .

[15]  O. Dulub,et al.  STM study of Cu growth on the ZnO(1010) surface , 2002 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Oliver Paul,et al.  Fracture Properties of LPCVD Silicon Nitride Thin Films from the Load-Deflection of Long Membranes , 2002 .

[18]  Martin Eickhoff,et al.  A new SiC/HfB2 based low power gas sensor , 2001 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  Renu Sharma,et al.  Environmental Transmission Electron Microscopy in Nanotechnology , 2005 .

[21]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[22]  Pasqualina M. Sarro,et al.  Optimization of a low-stress silicon nitride process for surface-micromachining applications , 1997 .

[23]  Leslie H. Allen,et al.  The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films , 2003 .

[24]  R. Twesten,et al.  In situ transmission electron microscopy studies enabled by microelectromechanical system technology , 2005 .

[25]  H. Topsøe,et al.  Developments in operando studies and in situ characterization of heterogeneous catalysts , 2003 .

[26]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[27]  K. Jensen,et al.  Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus , 1998 .

[28]  N. Jaeger Bridging Gaps and Opening Windows , 2001, Science.

[29]  A. Datye,et al.  Atomic-Scale Imaging of Supported Metal Nanocluster Catalysts in the Working State , 2006 .

[30]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[31]  P. S. Harris,et al.  Controlled atmosphere electron microscopy , 1972 .