A simple formula of the magnetic potential and of the stray field energy induced by a given magnetization

The primary aim of this paper is the derivation and the proof of a simple and tractable formula for the stray field energy in micromagnetic problems. The formula is based on an expansion in terms of Arar-Boulmezaoud functions. It remains valid even if the magnetization is not of constant magnitude or if the sample is not geometrically bounded. The paper continuous with a direct and important application which consists in a fast summation technique of the stray field energy. The convergence of this technique is established and its efficiency is proved by various numerical experiences.

[1]  T. Boulmezaoud,et al.  Stray field computation by inverted finite elements: a new method in micromagnetic simulations , 2023, ArXiv.

[2]  Tahar Zamène Boulmezaoud,et al.  Inverted finite elements for div-curl systems in the whole space , 2017, Adv. Comput. Math..

[3]  Samir Kumar Bhowmik,et al.  Solving two dimensional second order elliptic equations in exterior domains using the inverted finite elements method , 2016, Comput. Math. Appl..

[4]  Keltoum Kaliche Méthode des éléments finis inversés pour des domaines non bornés , 2016 .

[5]  Jens Markus Melenk,et al.  FEM–BEM coupling for the large-body limit in micromagnetics , 2015, J. Comput. Appl. Math..

[6]  M. M. Babatin,et al.  Inverted finite elements for degenerate and radial elliptic problems in unbounded domains , 2015 .

[7]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[8]  Tahar Zamène Boulmezaoud,et al.  Numerical Approximation of Second-Order Elliptic Problems in Unbounded Domains , 2014, J. Sci. Comput..

[9]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[10]  T. Boulmezaoud,et al.  Eigenfunctions of a weighted Laplace operator in the whole space , 2013 .

[11]  T. Miyazaki,et al.  The Physics of Ferromagnetism , 2012 .

[12]  Lukas Exl,et al.  Numerical methods for the stray-field calculation: A comparison of recently developed algorithms , 2012, 1204.4302.

[13]  C. Abert,et al.  A Fast Finite-Difference Method for Micromagnetics Using the Magnetic Scalar Potential , 2012, IEEE Transactions on Magnetics.

[14]  Markus Gusenbauer,et al.  Fast stray field computation on tensor grids , 2011, J. Comput. Phys..

[15]  S. Gubser,et al.  Expanding plasmas and quasinormal modes of anti-de Sitter black holes , 2006, hep-th/0611005.

[16]  Andreas Prohl,et al.  Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..

[17]  Z.J. Liu,et al.  Fast Fourier transform on multipoles for rapid calculation of magnetostatic fields , 2006, IEEE Transactions on Magnetics.

[18]  Stéphane Labbé,et al.  Fast Computation for Large Magnetostatic Systems Adapted for Micromagnetism , 2005, SIAM J. Sci. Comput..

[19]  R. Engel-Herbert,et al.  Calculation of the magnetic stray field of a uniaxial magnetic domain , 2005 .

[20]  A. Marty,et al.  A new technique for ferromagnetic resonance calculations , 2002 .

[21]  Andreas Prohl,et al.  Numerical analysis of relaxed micromagnetics by penalised finite elements , 2001, Numerische Mathematik.

[22]  A. Hubert,et al.  Solving Micromagnetic Problems. Towards an Optimal Numerical Method , 1993 .

[23]  J. L. Blue,et al.  Using multipoles decreases computation time for magnetostatic self-energy , 1991 .

[24]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[25]  K. Tomita Tensor Spherical and Pseudo-Spherical Harmonics in Four-Dimensional Spaces , 1982 .

[26]  T. Boulmezaoud,et al.  Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space , 2016 .

[27]  G. Castillo,et al.  The hydrogen atom via the four-dimensional spherical harmonics , 2007 .

[28]  N. Popović,et al.  Applications of -Matrix Techniques in Micromagnetics , 2005 .

[29]  T. Boulmezaoud Inverted finite elements: A new method for solving elliptic problems in unbounded domains , 2005 .

[30]  F. Alliot Etude des équations stationnaires de Stokes et Navier-Stokes dans des domaines extérieurs , 1998 .

[31]  Vivette Girault,et al.  Weighted Sobolev spaces for Laplace's equation in Rn , 1994 .

[32]  G. Spitz,et al.  The Spherical Harmonics , 1990 .

[33]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[34]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .