Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium

[1]  Gao Qing Lu,et al.  Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art , 1996 .

[2]  G. Ehrlich,et al.  Dynamics of activated chemisorption: Methane on rhodium , 1975 .

[3]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas using carbon dioxide , 1991, Nature.

[4]  T. Sodesawa,et al.  Catalytic reactions of hydrocarbon with carbon dioxide over metallic catalysts , 1984 .

[5]  Wilhelm F. Maier,et al.  Reaction kinetics of the CO2 reforming of methane , 1997 .

[6]  D. Wolf,et al.  Kinetics of Heterogeneous Catalytic Reactions , 2004 .

[7]  D. Brownlie Colloidal Fuel: Description of Different Processes , 1936 .

[8]  N. Bahlawane,et al.  New Sol–Gel Route for the Preparation of Pure α-Alumina at 950°C , 2004 .

[9]  Xenophon E. Verykios,et al.  Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO , 1996 .

[10]  G. Ehrlich,et al.  Internal molecular motions and activated chemisorption: CH4 on rhodium , 1987 .

[11]  J. Richardson,et al.  Carbon dioxide reforming of methane with supported rhodium , 1990 .

[12]  M. Bradford,et al.  The role of metal–support interactions in CO2 reforming of CH4 , 1999 .

[13]  W. D. Good,et al.  Thermodynamics of Organic Compounds. , 1980 .

[14]  T. Uchijima,et al.  Role of support in reforming of CH4 with CO2 over Rh catalysts , 1994 .

[15]  W. Maier,et al.  CO2-Reforming of Methane on Supported Rh and Ir Catalysts , 1996 .

[16]  F. Solymosi,et al.  Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts , 1993 .

[17]  F. Solymosi,et al.  Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals , 1991 .

[18]  X. Verykios,et al.  Mechanistic Study of Partial Oxidation of Methane to Synthesis Gas over Modified Ru/TiO2 Catalyst , 2001 .

[19]  J. Bueno,et al.  CO2 reforming of CH4 over Rh-containing catalysts , 2002 .

[20]  Patricio Reyes,et al.  React. Kinet. Catal. Lett. , 1974 .

[21]  C. López-Cartes,et al.  Metal Sintering in Rh/Al 2 O 3 Catalysts Followed by HREM, 1 H NMR, and H 2 Chemisorption , 2001 .

[22]  X. Verykios,et al.  Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts , 1994 .

[23]  R. Rosso,et al.  Dry reforming of CH4 with Ni and Rh metal catalysts supported on SiO2 and La2O3 , 1997 .

[24]  G. Somorjai,et al.  Leed and thermal desorption studies of small molecules (H2, O2, CO, CO2, NO, C2H4, C2H2 AND C) chemisorbed on the rhodium (111) and (100) surfaces , 1977 .

[25]  L. Basini,et al.  Molecular Aspects in Syn-Gas Production: The CO2-Reforming Reaction Case , 1995 .

[26]  Jens R. Rostrup-Nielsen,et al.  CO2-Reforming of Methane over Transition Metals , 1993 .

[27]  W. Maier,et al.  Active Surface Carbon—A Reactive Intermediate in the Production of Synthesis Gas from Methane and Carbon Dioxide , 1994 .

[28]  Gerhard Ertl,et al.  A molecular beam investigation of the catalytic oxidation of CO on Pd (111) , 1978 .

[29]  J. Geus,et al.  Chemisorption of methane on NiSiO2 catalysts and reactivity of the chemisorption products toward hydrogen , 1983 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  C. Au,et al.  Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts , 1997 .

[32]  Jun Yi,et al.  CO2-reforming of methane on transition metal surfaces , 1998 .

[33]  Zhipan Liu,et al.  General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. , 2003, Journal of the American Chemical Society.

[34]  X. Verykios,et al.  Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: I. Effects of Support and Metal Crystallite Size on Reaction Activity and Deactivation Characteristics , 1996 .

[35]  W. Sachtler,et al.  Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4 , 1997 .

[36]  R. Herman,et al.  Structure sensitivity of methane dissociation on palladium single crystal surfaces , 1997 .

[37]  E. Iglesia,et al.  Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts , 2004 .

[38]  M. Niwa,et al.  Support Effect of Metal Oxide on Rh Catalysts in the CH4-CO2 Reforming Reaction , 2002 .

[39]  W. H. Weinberg,et al.  QUANTITATIVE DETERMINATION OF THE ACTIVITY OF DEFECT SITES ON A SINGLE-CRYSTALLINE SURFACE : C-H BOND ACTIVATION OF CARBON-13 LABELED ETHANE ON IR(111 ) , 1994 .

[40]  C. Au,et al.  Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A Theoretical Study , 1999 .

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  K. Klier,et al.  Partial Oxidation of Methane , 1986 .

[43]  R. Madix,et al.  Molecular dynamics simulations for xenon adsorption on Pt(111) : dynamical differences in the effects produced by the Barker-Rettner and Morse potentials , 1997 .

[44]  J. Lercher,et al.  Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts , 1998 .

[45]  Dale F. Rudd,et al.  The Microkinetics of heterogeneous catalysis , 1993 .

[46]  J. Lapszewicz,et al.  Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals , 1994 .