Heun algebras of Lie type

We introduce Heun algebras of Lie type. They are obtained from bispectral pairs associated to simple or solvable Lie algebras of dimension three or four. For $\mathfrak{su}(2)$, this leads to the Heun-Krawtchouk algebra. The corresponding Heun-Krawtchouk operator is identified as the Hamiltonian of the quantum analogue of the Zhukovski-Voltera gyrostat. For $\mathfrak{su}(1,1)$, one obtains the Heun algebras attached to the Meixner, Meixner-Pollaczek and Laguerre polynomials. These Heun algebras are shown to be isomorphic the the Hahn algebra. Focusing on the harmonic oscillator algebra $\mathfrak{ho}$ leads to the Heun-Charlier algebra. The connections to orthogonal polynomials are achieved through realizations of the underlying Lie algebras in terms of difference and differential operators. In the $\mathfrak{su}(1,1)$ cases, it is observed that the Heun operator can be transformed into the Hahn, Continuous Hahn and Confluent Heun operators respectively.

[1]  L. Vinet,et al.  Truncation of the reflection algebra and the Hahn algebra , 2019, Journal of Physics A: Mathematical and Theoretical.

[2]  L. Vinet,et al.  The Heun–Askey–Wilson Algebra and the Heun Operator of Askey–Wilson Type , 2018, Annales Henri Poincaré.

[3]  L. Vinet,et al.  The Higgs and Hahn algebras from a Howe duality perspective , 2018, Physics Letters A.

[4]  L. Vinet,et al.  The q-Heun operator of big q-Jacobi type and the q-Heun algebra , 2018, The Ramanujan Journal.

[5]  L. Vinet,et al.  The Heun operator of Hahn-type , 2018, Proceedings of the American Mathematical Society.

[6]  K. Takemura On q-Deformations of the Heun Equation , 2017, Symmetry, Integrability and Geometry: Methods and Applications.

[7]  L. Vinet,et al.  Algebraic Heun Operator and Band-Time Limiting , 2017, Communications in Mathematical Physics.

[8]  A. Turbiner The Heun operator as a Hamiltonian , 2016, 1603.02053.

[9]  L. Vinet,et al.  Tridiagonalization and the Heun equation , 2016, 1602.04840.

[10]  L. Vinet,et al.  The Racah algebra and superintegrable models , 2013, 1312.3874.

[11]  L. Vinet,et al.  The equitable Racah algebra from three su(1,1)?> algebras , 2013, 1309.3540.

[12]  L. Skinner Second Order Differential Equations , 2011 .

[13]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[14]  Inna Basak Explicit solution of the Zhukovski-Volterra gyrostat , 2009 .

[15]  Andrei Vladimirovich Zotov,et al.  Painlevé VI, Rigid Tops and Reflection Equation , 2005, math/0508058.

[16]  J. V. Jeugt,et al.  Convolutions for orthogonal polynomials from Lie and quantum algebra representations. , 1996, q-alg/9607010.

[17]  L. Vinet,et al.  Quantum Mechanics and Polynomials of a Discrete Variable , 1993 .

[18]  A. Zhedanov,et al.  Mutual integrability, quadratic algebras, and dynamical symmetry , 1992 .

[19]  A. Zhedanov “Hidden symmetry” of Askey-Wilson polynomials , 1991 .

[20]  D. Masson,et al.  Spectral theory of Jacobi matrices in l 2 ( Z ) and the su (1,1) lie algebra , 1991 .

[21]  O. Zaslavskii,et al.  Periodic effective potentials for spin systems and new exact solutions of the one-dimensional Schrödinger equation for the energy bands , 1987 .

[22]  A. Zhedanov,et al.  Orthogonal polynomials in the lie algebras , 1986 .

[23]  P. Winternitz,et al.  A new basis for the representations of the rotation group. Lamé and Heun polynomials , 1973 .

[24]  R. Streater The representations of the oscillator group , 1967 .