Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory.

A simple formalism devised to calculate the condensed-to-atoms Fukui function [R. R. Contreras, P. Fuentealba, M. Galván, and P. Pérez, Chem. Phys. Lett. 304, 405 (1999)] has been further analyzed within a spin-polarized density-functional theory framework. The model is based on a frozen-core approximation to these local reactivity indices [M. Galván, A. Vela, and J. L. Gázquez, J. Phys. Chem. 92, 6470 (1988)], giving us an extended local reactivity description of systems based on the frontier spin-up and spin-down molecular orbitals. Degenerate molecular spin orbitals have been explicitly included in our model equations. Computational results for the nitric oxide (NO) and some simple carbene systems are presented in order to test the model. These quantities have been discussed in the context of changes both in charge density and spin density within the context of electron charge transfer or spin-polarization processes.

[1]  P. Geerlings,et al.  Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory. , 2005, The Journal of chemical physics.

[2]  P. Ayers,et al.  An example where orbital relaxation is an important contribution to the Fukui function. , 2005, The journal of physical chemistry. A.

[3]  R. Contreras,et al.  A DFT Analysis of the Strain-Induced Regioselective[2+2]Cycloaddition of Benzyne Possessing Fused Four-Membered Ring , 2005 .

[4]  R. Contreras,et al.  Relationship between local electrophilicity and rate coefficients for the hydrolysis of carbenium ions , 2005 .

[5]  M. Nguyen,et al.  Spin-philicity and spin-donicity of simple nitrenes and phosphinidenes , 2005 .

[6]  R. Contreras,et al.  A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes , 2004 .

[7]  L. Domingo Why do Electron‐Deficient Dienes React Rapidly in Diels−Alder Reactions with Electron‐Deficient Ethylenes? A Density Functional Theory Analysis , 2004 .

[8]  E. Lissi,et al.  Comparison of the free radical scavenger activities of quercetin and rutin An experimental and theoretical study , 2004 .

[9]  R. Parthasarathi,et al.  Intermolecular reactivity through the generalized philicity concept , 2004 .

[10]  Luis R. Domingo,et al.  Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis , 2004 .

[11]  P. Pérez Relationship between superelectrophilicity and the electrophilicity index of isolated species. , 2004, The Journal of organic chemistry.

[12]  R. Contreras,et al.  BACK TO BASICS: MODERN REACTIVITY CONCEPTS WITHIN THE HMO THEORY FRAMEWORK è.. , 2004 .

[13]  P. Ayers,et al.  On the importance of the "density per particle" (shape function) in the density functional theory. , 2004, The Journal of chemical physics.

[14]  R. Contreras,et al.  QUANTITATIVE REPRESENTATION OF REACTIVITY, SELECTIVITY AND SITE ACTIVATION CONCEPTS IN ORGANIC CHEMISTRY@ , 2004 .

[15]  P. Pérez,et al.  On the reduction of 4-oxo-4H-benzopyran-3-carbaldehydes: Global and local electrophilicity patterns , 2004 .

[16]  P. Geerlings,et al.  Spin-Philicity and Spin-Donicity of Substituted Carbenes, Silylenes, Germylenes, and Stannylenes , 2004 .

[17]  P. Fuentealba,et al.  Local reactivity index as descriptor of benzene adsorption in cluster models of exchanged zeolite-Y , 2004 .

[18]  P. Fuentealba,et al.  The maximum hardness and minimum polarizability principles as the basis for the study of reaction profiles , 2003 .

[19]  G. Cárdenas-Jirón,et al.  Application of Condensed Fukui Functions to Cobalt Macrocycle Complexes , 2003 .

[20]  A. Cedillo,et al.  Global and Local Reactivity and Activation Patterns of HOOX (X = H, NO2, CO2-, SO3-) Peroxides with Solvent Effects , 2003 .

[21]  A. Toro‐Labbé,et al.  Towards understanding the molecular internal rotations and vibrations and chemical reactions through the profiles of reactivity and selectivity indices: an ab initio SCF and DFT study , 2003 .

[22]  C. Deakyne Proton Affinities and Gas-Phase Basicities: Theoretical Methods and Structural Effects , 2003 .

[23]  P. Pérez,et al.  Global and Local Electrophilicity Patterns of Diazonium Ions and Their Reactivity toward π-Nucleophiles , 2003 .

[24]  U. Sarkar,et al.  Philicity: A Unified Treatment of Chemical Reactivity and Selectivity , 2003 .

[25]  R. Contreras,et al.  Origin of the synchronicity on the transition structures of polar Diels-Alder reactions. Are these reactions [4 + 2] processes? , 2003, The Journal of organic chemistry.

[26]  P. Fuentealba,et al.  Chemical Reactivity in the {N,NS,v(r)} Space , 2003 .

[27]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[28]  A. Cedillo,et al.  REACTIVITY CRITERIA IN SPIN-POLARIZED DENSITY FUNCTIONAL THEORY , 2002 .

[29]  A. Cedillo,et al.  The Markovnikov Regioselectivity Rule in the Light of Site Activation Models , 2002 .

[30]  R. Contreras,et al.  Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels-Alder reactions , 2002 .

[31]  O. Tapia,et al.  Spin-philicity and spin-donicity as auxiliary concepts to quantify spin-catalysis phenomena , 2002 .

[32]  R. Contreras,et al.  Comparison between Experimental and Theoretical Scales of Electrophilicity Based on Reactivity Indexes , 2002 .

[33]  P. Fuentealba,et al.  Local reactivity index defined through the density of states describes the basicity of alkaline-exchanged zeolites , 2002 .

[34]  L. Domingo,et al.  Density functional theory study of the cycloaddition reaction of furan derivatives with masked o-benzoquinones. Does the furan act as a dienophile in the cycloaddition reaction? , 2002, The Journal of organic chemistry.

[35]  A. Buchachenko,et al.  Electron spin catalysis. , 2002, Chemical reviews.

[36]  R. Contreras,et al.  Density Functional Theory Study for the Cycloaddition of 1,3-Butadienes with Dimethyl Acetylenedicarboxylate. Polar Stepwise vs Concerted Mechanisms , 2002 .

[37]  P. Pérez Theoretical Study of the Effect of the Substituents on the Gas Phase Acidity of Alcohols and Silanols , 2001 .

[38]  P. Geerlings,et al.  Nuclear Fukui function from coupled perturbed Hartree–Fock equations , 2001 .

[39]  R. Contreras,et al.  A Semiquantitative Description of Electrostatics and Polarization Substituent Effects: Gas-Phase Acid−Base Equilibria as Test Cases , 2000 .

[40]  P. Fuentealba,et al.  On the condensed Fukui function , 2000 .

[41]  W. Pickett,et al.  Density functional theory of magnetic systems revisited , 2000, cond-mat/0006200.

[42]  G. Vignale,et al.  Nonuniqueness of the potentials of spin-density-functional theory. , 2000, Physical review letters.

[43]  A. Toro‐Labbé,et al.  Global and Local Analysis of the Gas-Phase Acidity of Haloacetic Acids , 2000 .

[44]  P. Fuentealba,et al.  Empirical Energy−Density Relationships for the Analysis of Substituent Effects in Chemical Reactivity , 2000 .

[45]  A. Toro‐Labbé,et al.  Characterization of Keto-Enol Tautomerism of Acetyl Derivatives from the Analysis of Energy, Chemical Potential, and Hardness , 2000 .

[46]  R. Contreras,et al.  Sites of protonation of N2-substituted N1,N1-dimethyl formamidines from regional reactivity indices , 1999 .

[47]  P. Fuentealba,et al.  The variations of the hardness and the Kohn–Sham Fukui function under an external perturbation , 1999 .

[48]  P. Fuentealba,et al.  A direct evaluation of regional Fukui functions in molecules , 1999 .

[49]  R. Balawender,et al.  Atomic Fukui function indices and local softness ab initio , 1998 .

[50]  Alberto Vela,et al.  SINGLET-TRIPLET GAPS AND SPIN POTENTIALS , 1998 .

[51]  P. Senet Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness , 1997 .

[52]  P. Geerlings,et al.  Contribution of the Shape Factor σ(r) to Atomic and Molecular Electronegativities , 1997 .

[53]  P. Senet Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground‐state electronic density , 1996 .

[54]  M. Galván,et al.  ON THE STABILITY OF HALF-FILLED SHELLS , 1996 .

[55]  H. Ågren,et al.  Spin-catalysis phenomena , 1996 .

[56]  R. Parr,et al.  Reactivity indices and fluctuation formulas in density functional theory: Isomorphic ensembles and a new measure of local hardness , 1995 .

[57]  R. Parr,et al.  Variational method for determining the Fukui function and chemical hardness of an electronic system , 1995 .

[58]  Swapan K. Ghosh,et al.  SPIN-POLARIZED GENERALIZATION OF THE CONCEPTS OF ELECTRONEGATIVELY AND HARDNESS AND THE DESCRIPTION OF CHEMICAL BINDING , 1994 .

[59]  A. Cedillo A new representation for ground states and its legendre transforms , 1994 .

[60]  M. Galván,et al.  Spin-potential in Kohn-Sham theory , 1992 .

[61]  A. Vela,et al.  Chemical reactivity in spin-polarized density functional theory , 1988 .

[62]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[63]  L. Bartolotti,et al.  Electronegativities, electron affinities, ionization potentials, and hardnesses of the elements within spin polarized density functional theory , 1984 .

[64]  Roman F. Nalewajski,et al.  Reduction of derivatives and simple applications of the Legendre transformed density functional theory , 1983 .

[65]  Robert G. Parr,et al.  Legendre transforms and Maxwell relations in density functional theory , 1982 .

[66]  A K Theophilou,et al.  The energy density functional formalism for excited states , 1979 .

[67]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[68]  R. Parthasarathi,et al.  DFT study of some aliphatic amines using generalized philicity concept , 2005 .

[69]  Alejandro Toro-Labbé,et al.  Condensation of Frontier Molecular Orbital Fukui Functions , 2004 .

[70]  R. Parthasarathi,et al.  Effect of solvation on the condensed Fukui function and the generalized philicity index , 2004 .

[71]  R. Parr Density-functional theory of atoms and molecules , 1989 .