DETECTION OF PLANT-WIDE DISTURBANCES USING A SPECTRAL CLASSIFICATION TREE

Abstract This article demonstrates the use of agglomerative hierarchical clustering to detect the structure within a data set. When combined with spectral principal component analysis to capture the main spectral features of a data set it allows visualization of the structure of a model with an optimum number of principal components. The paper presents the theory and methods for construction of the tree and gives an example using industrial data.

[1]  T. Norris,et al.  Determination of end-points for polymorph conversions of crystalline organic compounds using on-line near-infrared spectroscopy , 1997 .

[2]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[3]  Darinka Brodnjak-Vončina,et al.  Chemometrics characterisation of the quality of river water , 2002 .

[4]  J. Baerdemaeker,et al.  Principal component analysis of chewing sounds to detect differences in apple crispness , 2000 .

[5]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[6]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[7]  Barry M. Wise,et al.  A Theoretical Basis for the use of Principal Component Models for Monitoring Multivariate Processes , 1990 .

[8]  M. K. Alam,et al.  Chemometric Analysis of NMR Spectroscopy Data: A Review , 2004 .

[9]  A. J. Morris,et al.  Non-parametric confidence bounds for process performance monitoring charts☆ , 1996 .

[10]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[11]  P. Khosla,et al.  Vehicle sound signature recognition by frequency vector principal component analysis , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[12]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[13]  Yukihiro Ozaki,et al.  How Can We Unravel Complicated near Infrared Spectra?—Recent Progress in Spectral Analysis Methods for Resolution Enhancement and Band Assignments in the near Infrared Region , 2001 .

[14]  Robert X. Gao,et al.  PCA-based feature selection scheme for machine defect classification , 2004, IEEE Transactions on Instrumentation and Measurement.

[15]  Chunming Xia,et al.  Isolating multiple sources of plant-wide oscillations via independent component analysis , 2003 .

[16]  Biao Huang,et al.  Spectral principal component analysis of dynamic process data , 2002 .

[17]  Young-Hak Lee,et al.  Process improvement methodology based on multivariate statistical analysis methods , 2004 .

[18]  Mary Beth Seasholtz,et al.  Making money with chemometrics , 1999 .

[19]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[20]  Ali Cinar,et al.  Diagnosis of process disturbances by statistical distance and angle measures , 1997 .

[21]  X. Wang,et al.  Multidimensional Visualization of Principal Component Scores for Process Historical Data Analysis , 2004 .

[22]  Roy S. Berns,et al.  A review of principal component analysis and its applications to color technology , 2005 .

[23]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[24]  Catherine Porte,et al.  Automation and optimization of glycine synthesis , 1996 .

[25]  Geir Rune Flåten,et al.  Caterpillar: an adaptive algorithm for detecting process changes from acoustic emission signals , 2005 .

[26]  Luiz Antonio d'Avila,et al.  Adulteration detection of Brazilian gasoline samples by statistical analysis , 2005 .

[27]  A. D. Gordon A Review of Hierarchical Classification , 1987 .

[28]  John E. Seem,et al.  Pattern recognition algorithm for determining days of the week with similar energy consumption profiles , 2005 .

[29]  Chunming Xia,et al.  Isolating multiple sources of plant-wide oscillations via independent component analysis , 2003 .

[30]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .