General constrained conservation laws. Application to pedestrian flow modeling

We generalize the results on conservation laws with local flux constraint obtained in [1, 9] to general flux functions and nonclassical solutions arising for example in pedestrian flow modeling. We first define the constrained Riemann solver and the entropy condition, which singles out the unique admissible solution. We provide a well posedness result based on wave-front tracking approximations and Kruzhkov doubling of variable technique. We then provide the framework to deal with nonclassical solutions and we propose a "front-tracking" finite volume scheme allowing to sharply capture classical and nonclassical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.

[1]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[2]  M. Rosini Nonclassical interactions portrait in a macroscopic pedestrian flow model , 2009 .

[3]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[4]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[5]  Nicolas Seguin,et al.  Analysis of a Burgers equation with singular resonantsource term and convergence of well-balanced schemes , 2012 .

[6]  C. Chalons,et al.  Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling , 2007 .

[7]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[8]  R. Colombo,et al.  Existence of nonclassical solutions in a Pedestrian flow model , 2009 .

[9]  P. LeFloch Hyperbolic Systems of Conservation Laws , 2002 .

[10]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[11]  Phillip Colella,et al.  Glimm's Method for Gas Dynamics , 1982 .

[12]  Rinaldo M. Colombo,et al.  A well posed conservation law with a variable unilateral constraint , 2007 .

[13]  Paola Goatin,et al.  Finite volume schemes for locally constrained conservation laws , 2010, Numerische Mathematik.

[15]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[16]  Clément Cancès,et al.  Error Estimate for Godunov Approximation of Locally Constrained Conservation Laws , 2012, SIAM J. Numer. Anal..

[17]  R. Colombo,et al.  Conservation Laws with Unilateral Constraints in Traffic Modeling , 2009 .

[18]  Hermano Frid,et al.  Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .

[19]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[20]  Dirk Helbing,et al.  Dynamics of crowd disasters: an empirical study. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[22]  N. Risebro,et al.  A Theory of L1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux , 2010, 1004.4104.

[23]  Mauro Garavello,et al.  Traffic flow on networks : conservation laws models , 2006 .

[24]  B. Temple Global solution of the cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws , 1982 .

[25]  Christophe Chalons Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..

[26]  R. Colombo,et al.  On the modelling and management of traffic , 2011 .

[27]  C. Dafermos Polygonal approximations of solutions of the initial value problem for a conservation law , 1972 .

[28]  E. Yu. Panov,et al.  EXISTENCE OF STRONG TRACES FOR QUASI-SOLUTIONS OF MULTIDIMENSIONAL CONSERVATION LAWS , 2007 .

[29]  Raimund Bürger,et al.  A family of numerical schemes for kinematic flows with discontinuous flux , 2008 .

[30]  Tai-Ping Liu,et al.  The Riemann problem for general systems of conservation laws , 1975 .

[31]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[32]  C. Chalons,et al.  Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling , 2008 .

[33]  M. Garavello,et al.  The Aw–Rascle traffic model with locally constrained flow , 2010, 1006.5865.