RF Circuit Linearity Optimization Using a General Weak Nonlinearity Model

This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today's deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC transfer functions to derive simple equations for obtaining design insights. The generalized weak nonlinearity model is applied to three known RF circuits: a cascode common source amplifier, a common gate LNA and a CMOS attenuator. It is shown that in deep submicron CMOS technologies the cascode transistor in both the common source amplifier and in the common gate amplifier significantly contributes IM3 distortion. Some design insights are presented for reducing the cascode transistor related distortion, among which moderate inversion biasing that improves IIP3 by 10 dB up to 5 GHz in a 90 nm CMOS process. For the attenuator, a wideband IM3 cancellation technique is introduced and demonstrated using simulations.

[1]  Jusung Kim,et al.  Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization , 2010, IEEE Transactions on Microwave Theory and Techniques.

[2]  E. Sánchez-Sinencio,et al.  A Highly Linear Low-Noise Amplifier , 2006, IEEE Transactions on Microwave Theory and Techniques.

[3]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[4]  Jonathan Borremans,et al.  6 A 40 nm CMOS Highly Linear 0 . 4to-6 GHz Receiver Resilient to 0 dBm Out-of-Band Blockers , 2011 .

[5]  Lawrence T. Pileggi,et al.  Efficient per-nonlinearity distortion analysis for analog and RF circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Bumman Kim,et al.  A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity , 2008, IEEE Transactions on Microwave Theory and Techniques.

[7]  G. Niu,et al.  Modeling and Characterization of Intermodulation Linearity on a 90-nm RF CMOS Technology , 2009, IEEE Transactions on Microwave Theory and Techniques.

[8]  H. Dogan,et al.  Intermodulation Distortion in CMOS Attenuators and Switches , 2007, IEEE Journal of Solid-State Circuits.

[9]  Bumman Kim,et al.  Linearity analysis of CMOS for RF application , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[10]  Behzad Razavi Design Considerations for Future RF Circuits , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[11]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[12]  S. El-Rabaie,et al.  Harmonic balance evaluation of nonlinear microwave circuits-a tutorial approach , 1988 .

[13]  Shen-Iuan Liu,et al.  Miniature 3-D inductors in standard CMOS process , 2002, IEEE J. Solid State Circuits.

[14]  James W. Haslett,et al.  Digitally-controlled RF passive attenuator in 65 nm CMOS for mobile TV tuner ICs , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[15]  E. Sanchez-Sinencio,et al.  Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[16]  C.C. McAndrew,et al.  Validation of MOSFET model Source–Drain Symmetry , 2006, IEEE Transactions on Electron Devices.

[17]  Byung-Sung Kim,et al.  Linearization of differential CMOS low noise amplifier using cross-coupled post distortion canceller , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[18]  Bumman Kim,et al.  Linearity analysis of CMOS for RF application , 2002, IMS 2002.

[19]  V. Aparin,et al.  A cellular-band CDMA 0.25/spl mu/m CMOS LNA linearized using active post-distortion , 2005 .

[20]  A.M. Niknejad,et al.  Analysis and Design of RF CMOS Attenuators , 2008, IEEE Journal of Solid-State Circuits.

[21]  Joy Laskar,et al.  A CMOS wide-bandwidth high-power linear-in-dB variable attenuator using body voltage distribution method , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[22]  Lawrence T. Pileggi,et al.  Compact reduced-order modeling of weakly nonlinear analog and RF circuits , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[23]  Gerd Vandersteen,et al.  Analysis and compact behavioral modeling of nonlinear distortion in analog communication circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Wei Cheng,et al.  A general weak nonlinearity model for LNAs , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[25]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[26]  G. Gildenblat,et al.  Benchmark Tests for MOSFET Compact Models With Application to the PSP Model , 2009, IEEE Transactions on Electron Devices.

[27]  Yves Rolain,et al.  Nonlinearity Analysis of Analog/RF Circuits Using Combined Multisine and Volterra Analysis , 2007, 2007 Design, Automation & Test in Europe Conference & Exhibition.

[28]  Xin Li,et al.  The New CMC Standard Compact MOS Model PSP: Advantages for RF Applications , 2009, IEEE Journal of Solid-State Circuits.

[29]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Chenglin Cui,et al.  Effects of the nonlinearity of the common-gate stage on the linearity of CMOS cascode low noise amplifier , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[31]  Huei Wang,et al.  Design and Analysis of Novel Linearization Technique of Cascode Cell in a 60-GHz CMOS Demodulator , 2011, IEEE Transactions on Microwave Theory and Techniques.

[32]  L. Larson,et al.  Distortion in Current Commutating Passive CMOS Downconversion Mixers , 2009, IEEE Transactions on Microwave Theory and Techniques.

[33]  Peter R. Kinget,et al.  High-Frequency Distortion Analysis of Analog Integrated Circuits , 1999 .

[34]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[35]  Calvin Plett,et al.  RF circuit implications of moderate inversion enhanced linear region in MOSFETs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  Heng Zhang,et al.  A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA , 2008, IEEE Journal of Solid-State Circuits.

[37]  J. Borremans,et al.  A sub-3dB NF voltage-sampling front-end with +18dBm IIP3 and +2dBm blocker compression point , 2010, 2010 Proceedings of ESSCIRC.

[38]  David J. Allstot,et al.  A capacitor cross-coupled common-gate low-noise amplifier , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[39]  J. Laskar,et al.  Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[40]  W. Grabinski,et al.  RF distortion analysis with compact MOSFET models , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).